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simulated using simple models thus providing a potentially great information
compression for many applications.

In most of the texture syntjis methods presented in this thesis, pixel
values are generated one-at-a-time according to both the given model and the
values of pixels previously generated in the synthesis until the image space
is completely filled. Nth-order joint density functions estimated from a
natural texture sample were used for this purpose in one method. The results
are excellent but the storage required, even for binary textures, is large.
Therefore, a much simpler first-order linear, autoregressive model was applied
to the texture synthesis problem. Using this model on both binary and conti-
nuous-tone textures, each pixel is generated as a linear combination of pre-
viously generated pixels plus stationary noise. The results indicate that many
textures are satisfactorily simulated using this approach.

By adding cross-product terms, the first-order linear model is extended
to a second-order linear model. The simulation results improve slightly but
the number of computations required for the statistics collection process
increases drastically. Non-stationary noise was thep used in the synthesis
process and further improvements in the quality of the simulations are achieved
at the cost of increased storage.

Methods of texture simulation using more than one model are studied in
this thesis. These multiple-model are useful for many textures, especially
those with macro-structure. They also improve the fit of the model when
applied to the parent texture data and therefore may produce improved simula-
tions.

A final model, called the best-fit model, generates texture simulations
directly from the parent texture itself. Each pixel in the synthesis image is
generated based on the similarity of its previously-generated, neighboring
pixel values to pixel values in all similarly-shaped neighborhoods in the
parent texture. The measures of similarity at all points in the parent texture,
along with a random variable, are used to generate the next pixel value in the
synthesized image. The synthesis results using model are excellent but the
synthesis process is very computationally demanding.

Although the success of texture synthesis is highly dependent on the
texture itself and the modeling method chosen, general conclusions regarding
the performance of various techniques are given. Methods of texture segmen-
tation and identification based on texture synthesis results are also
presented.

"The views and conclusions in this document are those of the author and
should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government."
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ABSTRACT

Numerous computational methods for generating and

simulating binary and grey-level natural digital-image

textures are r'roposed using a variety of stochastic

models. Pictorial results of each method are given and

various aspects of each approach are discussed. The

quality of the natural texture simulations depends on the

computation time for data collection, computation time for

generation, and storage used in each process. In most

cases, as computation time and data storage increase, the

visual match between the texture simulation and the parent

texture improves. Many textures are adequately simulated

using simple models thus providing a potentially gjrcat

information compression for many applications.

In most of the texture synthesis methods presented in

this thesis, pixel values are generated one-at-a-time

according to both the given model and the values of pixels

previously generated in the synthesis until the image

space is completely filled. Nth-order joint density

functions estimated from a natural texture sample were

used for this purpose in one method. The results are
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excellent but the storage required, even for binary

textures, is large. Therefore, a much simpler first-order

linear, autoregressive model was applied to the texture

synthesis problem. Using this model on both binary and

continuous-tone textures, each pixel is generated as a

linear combination of previously generated pixels plus

stationary noise. The results indicate that many textures

are satisfactorily simulated using this approach.

By adding cross-product terms, the first-order linear

model is extended to a second-order linear model. The

simulation results improve slightly but the number of

computations required for the statistics collection

process increases drastically. Non-stationary noise was

then used in the synthesis process and further

improvements in the quality of the simulations are

achieved at the cost of increased storage.

Methods of texture simulation using more than one

model are studied in this thesis. These multiple-model

are useful for many textures, especially those with

macro-structure. They also improve the fit of the model

when applied to the parent texture data and therefore may

produce improved simulations.

A final model, called the best-fit model, generates

texture simulations directly from the parent texture

xiv



itsel Each pixel in the synthesis image is generated

based on the similarity of its previously-generated,

neighboring pixel values to pixel values in all

similarly-shaped neighborhoods in the parent texture. The

measures of similarity at all points in the parent

texture, along with a random variable, are used to

generate the next pixel value in the synthesized image.

The synthesis results using model are excellent but the

synthesis process is very computationally demanding.

Although the success of texture synthesis is highly

dependent on the texture itself and the modeling method

chosen, general conclusions regarding the performance of

various techniques are given. Methods of texture

segmentation and identification based on texture synthesis

results are also presented.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Texture is important characteristic for the analysis

of many types of images. It is an important feature for

discrimination and identification of regions in images and

as a result the vast majority of work on texture has

concentrated on these applications. Although many

different texture discrimination techniques have been

developed, most are ad hoc.

The problem inverse to texture analysis is texture

synthesis, or the generation of image fields hlaving

analytical and visual characteristics similar to natural

textures. Texture synthesis has been over-shadowed by the

emphasis placed on the discrimination problem and its

applications. Little work has been done on synthesis even

though numerous applications exist. For example,

intelligent image sensors could transmit boundaries of

textured image regions. Based on statistics gathered by

the sensor, this region could be reconstructed using

simulation techniques with little or no loss of

1



information. The result is excellent data compression.

Texture synthesis can also be used as a texture

analysis tool leading to a better understanding of

textures and their perception by numans as well as

improved methods of discrimination. By carefully

controlling the statistics of a texture in a synthesis

process visual changes in texture are observed. Thus,

texture synthesis methods allow researchers to identify

and measure the information content of individual

statistical measurements. By assembling these

measurements and incorporating them into a texture

simulation process, statistics may be measured from a

parent texture and used to produce a texture simulation.

The degree to which the parent and simulation are visually

similar indicates the value of the statistical

measurements and the model used in the simulation process.

Given a group of statistical measurements which are

proposed to be useful texture measures, possibly the best

may be chosen based on the quality of the corresponding

texture simulations. In this way, researchers are able to

develop better discrimination as well as better synthesis

methods.

2



1.2 Concepts of Texture Synthesis

Despite its importance, a precise definition of

texture does not exist. Texture is often considered to be

composed of a set of primitives and their spatial

organization. More important, texture usually possesses

an invariance property. We will use this invariance

property as one definition of texture in this thesis. An

observer should detect no visual difference between one

windowed portion of a textured region and another. Thus

texture is also a function of window size. If a

difference over a region is detected then either the

texture is not homogeneous (see section 2.1) or a larger

or smaller window should be used. Windowing is very

important when gathering statistics to be used for texture

discrimination or texture synthesis.

The approach to texture synthesis used in this thesis

is outlined in Fig. 1.1. As a first step in the synthesis

process, statistics are calculated from measurements taken

on a parent sample texture. The statistics are then used

to estimate model parameters. In the final step, these

model parameter estimates are used to generate a texture

synthesis.

All of the digital impges in this thesis are 512 by

3
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512 pixels. They have either 256 gray levels (continuous

tone) or 2 gray levels (binary). The orig inal parent

texture images ill this thesis have been cnosen from an

album by Brodatz [i]. High quality prints obtained from

the photographer were scanned and digitized at the USC

Image Processing Institute.

The performance measure for any texture synthesis

method is purely visual. Thus the rating of any synthesis

system must be made by an observer and is subject to human

variability. These facts must be remembered when

considering the results of synthesis techniques discussed

in this thesis and in other works. For this reason, the

visual analysis of results in this thesis is left

primarily to the reader. Nevertheless, general guidelines

and trade-offs involved in texture synthesis have been

developed in the course of this work.

The success of any texture synthesis as well as any

image processing technique (enhancement, restoration,

etc.) also depends on the display medium used for final

results. It is unfortunate that the product of so much

work is subjected to the imperfections of recording and

printing processes. We have attempted to minimize these.

degradations as much as possible.
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1.3 The Stochastic Model

The approach used to synthesize textures in this

thesis is probabilistic (statistical) rather than

structural because the structural approach would probably

require a different processing method for each texture.

Textures which are irregular and highly random are often

difficult to analyze using a structural approach as they

do not have "structure" as such. On the other hand, such

textures are easily analyzed using a probabilistic

approach. Textures which are not composed of well-defined

non-varying primitives usually do not lend themselves to a

structural approach. Highly regular textures which are

usually best explained using a structural approach may

also be studied using a statistical approach. In this

case, the statistical model must be constructed to explain

regular and periodic events with less importance placed on

random elements of the model. Naturally, the structural

and probabilistic approaches overlap considerably.

In our statistical approach to texture analysis and

synthesis we will use various stochastic models. Textures

are analyzed as series of pixels to which a model is fit.

The time or space series of successive pixels which forms

our sample parent texture is regarded as a sample

realization from an infinite population of such textures.

6



A iodel is derived which attempts to explain the numerical

sequence of pixels in the observed parent texture. This

stochastic model may then be used to simulate a similar

sequence which becomes our texture synthesis.

The power of the stochastic models presented in this

thesis is that it is easy to use the model in a mode which

synthesizes textures given the necessary model parameters.

In this sense, the stochastic approach is sufficient to

capture everything about a texture. The quality of the

synthesis is also a measure of the amount of information

contained in the model.

1.4 Organization and Contributions of the Thesis

In the next chapter, a one-dimensional texture

synthesis model is mathematically developed. It is

analyzed as a Markov model where the state of the system

is considered to be defined by the sequence of previous

pixel values. Similar texture synthesis has also been

done by Julesz [8], Purks and Richards [3], Conners [7),

Abend [6], and Gagalowicz [4,5]. With the simple model

presented in Chapter 2, textures with controlled

statistical properties are generated and used to study

human perception of texture.

In Chapter 3, the one-dimensional model is extended

7



to tw. imensions and is used to synthesize natural binary

textures. This work was presented earlier by Garber [9]

and similar work was done by Lu and Fu [10]. This

two-dimensional probabilistic model which generates I
textures based on higher-order probability densities is

then reduced carefully to a linear autoregressive model.

Results of both methods applied to a wide variety of

textures are shown.

In Chapter 4, a method to reconstruct higher-order

densities for texture synthesis from second-order

measurements is presented. The results confirm the value

of second-order statistics in texture analysis.

In Chapter 5, the autoregressive model is applied to

continuous-tone texture synthesis. Much simpler synthesis

models were used by McCormick and Jayaramamurthy [21 and

Tou, Kao and Cheng [11]. The success of their method was

not established due to the limited number of textures

involved in their studies, however their results suggested

that time series models could be used to generate some

natural textures. The large, two-dimensional, linear

model presented in Chapter 5 is then extended to a

quadratic autoregressive form and synthesis results with

both stationary and non-stationary noise are presented.

The generated textures show that these models define

8



valuable synthesis methods.

In Chapter 5, texture synthesis methods wnicil

incorporate more than one autoreg ressive model are

presented. The multiple-model methods methods could be

valuable in synthesizing textures which have very coarse

structure and textures which are composed of subtextures.

In Chapter 7, a texture synthesis method which

simulates complete probability density information for use

in the synthesis process is developed. This method is

computationally burdensome but also yields the best

synthesis results. A method similar to this will be

valuable as processor speed increases in the future.

In Chapter 8, methods for adding and removing

non-homogeneities in texture mean and variance are

presented.

In Chapter 9, the measures used to estimate

parameters in the autoregressive model are applied to the

problem of texture discrimination. The methods differ

from those presented earlier by Deguchi and

Morishita [12], Kaiser [13], Pratt, Faugeras and

Gagalowicz [14], and Haralick et al. [15]. The chapter

illustrates two approaches to use statistics froin a

synthesis model to discriminate textures.

9



The experimental results of this thesis are largely

visual therefore particular attention should be devoted to

the figures. A casual reader could read section 2.1,

Chapter 3, Chapter 5, and Chapter 7 and still understand

much of the basic concepts of the work as well as major

results. Chapter 10 contains a final summary and

comparison of the models and their corresponding results.

As a whole, this thesis presents results in texture

simulation using methods developed herein or only briefly

mentioned in other previous studies. The texture

syntheses are exceptional in some cases and certainly

notable in others. This work should encourage additional

research in the field of texture synthesis.

1.5 Notation

Any variables which have different meanings within

this thesis are clearly defined in the places where they

are used. The term "complex" means complicated rather

than a variable with real and imaginary parts. The terms

"normal distribution" and "normally distributed" are to be

taken in a statistical probability density function

(ie.Gaussian distribution) sense.

10



CHAPTER 2

ONE-DIMENSIONAL BINARY TEXTURE MODEL

2.1 Introduction

Texture is a complex image attribute that has been

the subject of much research and is difficult to define

precisely. The relationship between discrimination of

textures by human observers and the mathematical

attributes of textures has also been extensively

researched. Models for computer discrimination have been

proposed based on statistical parameters considered in

some aspects to be primary texture measures.

The terminologies in a portion of previous texture

work have often been vague at best. As a result, the

terms second-order and third-order have been seriously

twisted and misinterpreted from study to study. In this

and following chapters, we will attempt to suppress this

confusion by carefully defining the various terms.

The stochastic approach toward texture analysis

considers texture fields as samples of two-dimensional

stochastic fields. Assuming that we are dealing with

1i



sampled and quantized imagery, let I(nil,ni2) denote the

random field. Here nil and n i2 are integers representing

coordinates of points in the image plane. Let i be the

vector having coordinates nil and ni2 (i.e.Ai=(nil,ni2 )).

Second-order statistics are given by the set of

second-order joint density functions

P i (V.,V.) (2.1)
1if J

for all possible vectors ni and nil where Vi and Vj are

the values of the random variables I(ni) and I(nj),

respectively. In most texture work and in all of the work

in this thesis (except for the work in Chapter 7 and

Chapter 8) the random field is assumed to be homogeneous,

that is, all orders of probability densities are invariant

through translations. Thus,

Pn i +c n.+c . (2.2)

where c is an arbitrary vector constant. As an example,

P(VIV 2 ) H P(V3,V4) (2.3)

where VI, V2 , V3 and V4 are as shown in Figure 2.1. In

most of our work, dummy values of random variables

(denoted for example by Vi) will be used to label pixels

at vector location n i .

12



Given the assumptions that a texture field is

homogeneous, the joint density functions P. for all vector
r

separations r = ni-n j represent the most complete set of

second-order statistics possible. The statistical

expectation of any functions of these joint density

functions are called second-order statistics. If a pixel

is connected to any of its neighbors on the same row, that

is, if we consider neighbors immediately to the left or

right (such as V 5 and V6 in Figure 2.1), then their joint

density is called a second-order nearest-neighbor joint

density and any statistical expectations of the joint

density are second-order nearest-neighbor statistics.

Nearest-neighbor densities and nearest-neighbor statistics

are very important in this chapter as the textures to be

generated are primarily one-dimensional.

Similarly, third-order statistics are given by the

set of third-order density functions

P - (V.,V.,V (2.4)
inn k i k

Assuming homogeneity of the texture, then

P- -p
Pifn j ln k  ni+c,n +Cnk+c (2.5)

for all i~i and an arbitrary vector constant . As an

example,

13



P(VI1 V2 ,V 3) P(V 4 1V5 ,V6 ) (2.6)

in Figure 2.2. The statistical expectations of any

function of these third-order densities are called

third-order statistics. All second-order statistics may

be derived from third-order joint densities. In this

chapter, third-order statistics involving adjacent pixels

along an image row, such as the pixels, V7 ' V8 , V9 # in

Figure 2.2, will be called third-order nearest-neighbor

statistics.

Julesz [8] created computer generated patterns with

controlled high-order statistical properties. A

conclusion, often referred to as the Julesz conjecture,

drawn from his work is that texture fields differing only

in third- and higher-order statistics cannot be

discriminated by a human viewer. Pollack [16] showed

later that textures whose first- and second-order

nearest-neighbor probabilities are equal may be

discriminated by varying the third-order nearest-neighbor

probabilities. Purks and Richards [3] extended this

concept to create texture patterns that differ only in

their statistics for four adjacent points. This study

indicates that such textures can also be easily

discriminated. However, as was pointed out by Pratt [14],

the second-order probability densities of the two fields

14



are not constrained to be equal for arbitrary pixel pairs

along an image line. Thus there is still some question as

to the relationships between measured mathematical

parameters and human discriminability. Later work by

Gagalowicz [5) seems to indicate that carefully generated

binary patterns whose second-order probability pairs are

equal for arbitrary distances can be visually

discriminated by human observers and therefore presents a

valid contradiction to the Julesz conjecture. Controlling

different statistics of a texture is often a painfully

difficult process and as a result, most of these textures

are generated using approaches unlike the Markov approach

of this chapter. Often blocks of pixels are generated

with certain properties or patterns with special

orientation and separation are used to study the effect of

statistical changes on the human visual system. The

mathematical relationships between the joint density

functions of any texture are indeed complex.

For these reasons, we begin with one rather simple

method of generating Markov one-dimensional binary

textures. In later chapters, these ideas will be modified

and extended to generate and simulate two-dimensional

textures.

We have studied in detail the mathematical

15



relationships of parameters involved in binary

computer-generated one-dimensional texture patterns.

Texture patterns in this paper have been generated using

the mathematical relationships derived herein. Methods

have been developed to control texture statistics for both

nearest-neighbor and non-nearest-neighbor cases. Examples

of both types of textures are presented. Using these

methods, numerous counter examples to Julesz's conjecture

may be generated and are illustrated in this Chapter.

Throughout this chapter, the P(VIV 2 ,...,VN) will

denote the nearest-neighbor, Nth-order joint densities of

our one-dimensional texture and the pixels Vl,V 2 ,...,VN

will be adjacent to one another in the sequence as shown

in Fig. 2.3 unless otherwise stated.

2.2 Generation Procedure

One-dimensional binary textures represent the

simplest form of texture possible. It is believed that

such binary patterns force human observers to utilize

primitive visual mechanisms in discrimination. They are

not designed to replace or imitate natural textures but

are experimentally valuable in deriving concepts

concerning texture attributes due to their mathematical

simplicity.
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In this experiment, binary one-dimensional sequences

with carefully-controlled transition probabilities,

dependent on the previous four points, were generated.

Each sequence was then broken up into shorter 512-pixel

strings which were stacked to form the two-dimensional

512x512 array which served as the texture pattern as is

illustrated in Figure 2.4. Thus, the derived statistics

are only controlled in one dimension but tie final texture

is two-dimensional.

We define the a priori probability of a binary

sequence of length N by P(Vl,V 2,...,VN) where each Vi,

i = 1,...,N is either 0 or 1. In our experiment this

binary sequence is deterflined by generation parameters.

This set of parameters, G 0(VI,V 2,...,V N), each of which

represents the probability of generating a 0 after the

contiguous binary sequence V1 , V2 , ... ,VN, defines Cue

Markov process used to generate the texture pattern. It

follows that the probability of generating a 1 after the

sequence V1IV 2 ,...,VN is 1-00(Vl,V 2 ,...,VN). That is,

G0 (V 1,V 2  .... ,VN) = 1-G1 (VIV 2 ' .... N)  (2.7)

Illustration of this commonly-used texture generation

method is given by Purks and Richards [3]. However, it

should be pointed out that their generation parameters

were in many cases constrained to provide equal N-grain
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statistics, P(VlV 2 ,...,VN). The term "N-gram" refers to

the Nth-order joint density function of a texture and was

used by Purks and Richards in their study of texture. The

term "N-gram"is frequently used in this thesis as a

substitution for the longer terminology "Nth-order joint

density function." A texture procedure, more general than

that proposed by Purks and Richards, is detailed here.

These generation parameters are actually a special

set of conditional probabilities. Only this specific

group of conditional probabilities is used to generate the

texture.

2.3 Analytical Analysis of the Markov Texture Process

By examining the mathematics of the Markov process we

hope to generate patterns according to a set of given

probabilities P(V1 ,V2 ,...,VN) which may be named the

N-gram statistics of a specific pattern. We must

therefore deal with the relationships that exist between

these N-gram statistics and their generation parameters

denoted by G(VI,V 2 ,...,VN). Examining these relationships

and also those between N-gram statistics of different

lengths (that is the relationships between
P(VIV2,...,VNI) and P(VV2, ... ,VN2) for all N1 and N2 )

leads us to an understanding of the probabilistic system

involved and thereby a method of generating desired
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texture patterns.

In generating random texture sequences, it is useful

to first look at a simple analogy to the process from

which basic concepts and conclusions can be drawn. We

might regard this generation to be equivalent to the

experiment consisting of tossing a "smart" coin that has a

finite memory. In this case, G 0 (Vl v2 1 ... , VN) might

represent the probability of tossing a "heads" given the

previous sequence of N tosses was V ,V2 ... ,V . The

resulting string of "l"'s and "O"'s (0 is the random

variable denoting heads, 1 denotes tails) recorded from

this experiment is our "texture." We realize immediately

that the texture is "determined" by this set of generation

parameters G0(Vl,V 2 ,...,VN). Using the concept of

conditional probability where P(A/B) is the probability of

A given B we notice that

G0 (VIV 2 ... ,N) = P(0/Vl,V 2 ,...,VN) (2.8)

Perhaps the most important concept derived from these

generation parameters is that of the finite memory of the

system. As is indicated by the notation GO(VlV 2,...,VN),

the probability of generating a zero depends on the string

of binary values VlV 2 1 ..., VN and not those "preceding"

V1 . It is thereby suggested that our system has an N-gram

memory and we will define such a system as
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N-gram-dimensional. For example, returning to our coin

tossing experiment, if we are in a four-gram-dimensional

system, the probability of tossing a head depends on the

four previous tosses only and all these conditional

probabilities are determined by the sixteen parameters

G0 (VIV 2 ,V 3,V 4 ) .

With these concepts in mind we can find these

generation parameters GO(VlV 2,...,VN) given the desired

probabilities P(Vl,V 2 ...,VN) and vice versa. The

approach taken by Purks and Richards [3] in finding these

N-gram statistics is based on sampling the generated

textures. This may be seen by examining the entries in

Table I of Ref. [3]. The entries correspond to the number

of each N-gram counted in the texture generated and the

accuracy of such probabilities depends on the law of large

numbers. So the true probabilities P(VI,V 2 ... VN) are

only approximated by the output textures and this

approximation is poor when the physical size of the

textures is small. These estimates have greater variance

when the true probabilities are small. Therefore it is

desirable to compute the exact probabilities given the

generation parameters of the system.

Before proceeding further it is useful to prove the

identity
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P (VlIV2P..V~i (2.9)

P(V 1 IV 2 ... V VN-l'0)+P(vl1V 2 I..IV N-l'1)

Proof:

P(V1 1 V 2 '... V VN-l 1)

P(V 1 V 2 1...IV N- l)*Gl1(VlIV 2 "' V N-1) (2.10)

P(V1IV 2 P... V N9*G 0(VlIV 2I.IV N-1)=

P (V 1 IV2 I*. .. VN- l)*(l-G 1(VlV 2 ".',V N-1))

therefore

P(lVP(V 1IV 2 '.O)+PVl, 2 . V N-1) =

As a result we have the following three sets of

equal ities

P(VJJV 2 " .. IV N-1,0)

P (V 1 IV 2 .. V N- i)*G (l 0 (V 2  N-) (.1

P(V 1 1 V 21 .. I VN-1) =(21)

P(V 1 v,. .V ,V 01 )+P(V1,V2  IVN 1

G (VlIV2 I..V~l P(V 1 1V 2 1..VlQ) (2.13)

Equation (2.13) results from Eqs. (2.11) and (2.12) and is
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essentially a statement of Bayes theorem for our problem.

2.4 Texture Statistics From Generation Parameters

Let us then consider the problem of obtaining the

generation parameters (G's) from the N-grams (P's).

Immediately we come to the conclusion that this is a

trivial problem. One might merely use Eq. (2.13) to

deduce the generation parameters. However, the equations

derived so far do not indicate the extensive relationships

which exist between the N-grams.

Equation (2.13) is not invertible so it is not useful

in obtaining the N-gram statistics, P(VI ,...,VN) of a

sequence given the generation parameters. As was stated

above, once the generation parameters are defined, a

texture may be generated using those parameters and the

N-gram statistics are determined. We also know that once

a complete set of N-gram statistics P(VI,,...,V N) are

defined for some N 1 , the N-gram statistics P(V '...'VN )11N 2

may be resolved using Eq. (2.12) for all N 2<N . Given the

generation parameters of a system, G0(Vl,V 2 ,...,VN), we

can analytically determine the N-gram statistics,

P(V1 ,V2 ,...,VN) of the resulting texture.

The solution to this problem of finding N-gram

statistics given generation parameters may be found by
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considering the generation procedure as a discrete state

Markov process. This approach is readily seen when

considering the generation parameters G0 (VIV 2 ,... ,VN) as

transition probabilities. If we consider a

two-dimensional system with P(01 0),P(0,1),P(l,0) and

P(l,l) and generation parameters G(0,0), G(0,1), G(1,0)

and G(l,l) we may define our system as composed of four

possible states (0,0), (0,1), (1,0) and (1,1). If the

system is in state i at the Kth observation and in state j

at the (K+l)th observation then we say that the system has

made a transition from state i to state j at the Kth stage

of the generation process. In our example an observation

is taken at each generation of a single new binary value

and the state is determined by the values of the last two

binary numbers generated. As an example, consider the

sequence 0,1,1,0,0. We might consider the system to be in

the (0,1) state at the start which may represent the Kth

stage of our generation process then a transition is made

to the (1,l) state at the (K+I) stage. These transition

probabilities are determined by the generation parameters

of the system. We also note that our N-dimensional system

has 2N possible states. As the transitions from each of

these 2 N possible states to each of the 2 N possible states

is fixed by our generation parameters we may form a

transition matrix T whose elements t(i,j) represent the
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probability of a transition from the ith state to the jth

state. If T is the transition matrix of a regular Markov

chain, then there is a unique probability vector p which

has positive coordinates and satisfies

= (2.14)

This same vector p may be computed by taking any row of

the matrix

Tq  (2.15)

as q approaches infinity [17]. The vector p represents

the vector of steady state probabilities. In our case it

contains the desired probabilities P(VlIV 2 ... ,VN).

It is important to realize that this theorem holds

for regular Markov processes. If there is an integer q

such that every element of the matrix in Eq. (2.15) is

stricly positive then the process is regular. Some

processes are not regular such as absorbing Markov chains

(17]. When any element of the transition matrix is equal

to one along the diagonal, the process is said to be

absorbing given that the system may begin in any state.

This could happen if G0 (0,0) = 1 for example (a series of

0's would be generated in this case). For the purposes of

our discussion we will assume that
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0 < G0 (Vl,V 2 ,... VN) < 1 (2.16)

for all V i . This is a sufficient but not necessary

condition for the process to be regular.

Applying these concepts to a two-dimensional system

we obtain the transition matrix

Final State

00 01 10 11

00 G0 (0,0) l-G0 (0,0) 0 0
Initial

State 01 0 0 G0 (0,l) 1-G 0 (0,i) (2.17)

10 G0 (1,0) 1-G0 (1,0) 0 0

11 0 0 G (1,1) 1-G0(1,1).

00

The first row contains the transition probabilities

from state (0,0) to states (0,0), (0,1), (1,0) and (1,1)

in that order. The following set of equations results

when Eq. (2.14) and Eq. (2.17) are combined:

G 0 (0,0)-l 0 G 0 (1,0) 0 P(0,0) 0

1-G0 (0,0) -1 1-G0(I,0) 0 P(0,l) 00x = (2.18)

0 G0 (0,1) -1 G0 (1,I) P(l,0) 0

0 1-G 0 (0,l) 0 -G0 (1,i) P(l,l) 0.

As the above system is singular, we may form an
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equivalent non-singular set by replacing any equation with

P(0,0)+P(0,1)+P(I,0)+P(1,1) = 1 (2.19)

by using the fact that p is a probability vector. Solving

this system gives the desired two-gram statistics

P(VlV 2 ) •

Examining these generation parameters further we find

that the same N-gram statistics may be generated by

generation parameters of a different dimension. For

example, consider the generation parameters in Table 2.1.

TABLE 2.1. EQUIVALENT GENERATION PARAMETERS

Set 1 Set 3

G 0(0,0) = 0.05 G0 (0,0,0) = 0.05 G0 (1,0,0) = 0.05

G 0 (0,1) = 0.07 G 0 (0,0,1) = 0.07 G0 (1,0,1) = 0.07

G 0(1,0) = 0.92 G0 (0,1,0) = 0.92 G0 (1,1,0) = 0.92
G0 (1,1) = 0.75 G0 (0,1,1) = 0.75 G0 (1,1,1) = 0.75

Notice that the probability of generating a zero

following a VIV 2 ,V 3 does not depend on V1 . The values,

G0 (VIV 2 ,V 3 ) of the second set indicate that the system is

memoryless beyond two previous generation steps. We may

write
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G 0 (Vi0'V 2,FV 3) P(0/v11 V 2 "V 3) (2.20)

P(O/v 2 V 3  = 0 (V 2 f V3

for all V 2and V 3

It follows that, according to Eq. (2.11), the

P(V 'V2D...V ) are also determined in our example for N>2

given P(V VV 2 ) and Go (Vl'V2). 'Thus we have

P(V1 1 V 2 1 V3) P(ViV 2 )*G v (v11v2) (2.21)
3

P(V1 ,V 2 V 31 V4) P(ViV 2 V 3 )*G V4 (V1 v2fV21 3)

=P(ViV 2 1 V3 )*G V4 (V 21 v3) (2.22)

We conclude that given any set of generation parameters

GO(Vl1 V2 1 ... ,VN) we may form a set of generation

parameters Go(V1,V2, ...,IVN), M~ greater than or equal to N,

according to the rule

G 0 (V 1 V2 1.... PVM-NVM-N+11... M (.3

0 O(M-N+1-'M

that generate an equivalent set of N-gram statistics and

therefore equivalent textures.

When desiring to generate textures according to a

given set of N-gram statistics, P(VJIV 2 0... IVN) we must

realize the set of constraints imposed on the set. For

example,
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1 1 1

- P(VlIV 2 '...,VN) = 1 (2.24)
vI  0 V 2 =0 VN =0

for all N. Returning to the set of equations used to

determine the 2-gram statistics in matrix form we realize

that, by adding the first two rows and last two rows of

Eq. (2.18), P(0,1) = P(1,0). In fact, by considering the

set of equations arising from the set of equations derives

from the generation systems of higher dimensions we find

P(VIV 2 ,V2 V2 ,. . . ,V 2 ,v 3 ) =

P(V3 ,V2 ,V2 ,V21 ., V1 ) (2.25)

This implies that many constraints are present on the

N-gram statistics. For example, in the 3-gram-dimensional

system containing P(V1, V2 ,V 3 )

P(0,0,1) = P(,0,00)

P(0,1,1) = P(1,1,0) (2.26)

but also by Eq. (2.12) and the fact that P(0,1) = P(1,0),

P(Ol,O)+P(0,1,1) = P(l,0,0)+P(l,0,1) (2.27)

and
P(0,0,1)+P(l,0,1) = P(0,1,0)+P(l,l,0)

By definition we also know that
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P VP V (o v~ 2 , ... VN I )*GO0 (O,V ,V 2 ,  ... ,VN -1)

+P(I,V ,'V 2,-.-,VN-1I)*G 0 (,V1IV2,..-,VN-1 )  (2.28)

= P(V 1 I,V 2 ,...,VNI,0)

and

P(0,VIV 2 F, . .. ,V N -1l )* [1 -G 0 (0 ,V I V 2 ', . .. ,V N -1) ]

+P(l,V 1I~V 2 , .. VN I ) , [1-G 0 (,V l 1v 2 , " .. ,N-1 ) ]

= P(V IV 2 ... , VN' 1) (2.29)

Combining Eqs. (2.28) and (2.29) with Eq. (2.12)

P(O,VlV 2 , ... ,VNI)+P(I,Vl,V2 ,•.. ,VN_)

P(V1I... VN-I) (2.30)

Equation (2.30) holds for all N>2.

Four constraining equations exist when Eqs. (2.24),

(2.25) and (2.30) are reduced to orthogonal form for this

3-gram-dimensional system. This implies that we have four

degrees of freedom when choosing the eight values

P(VIV 2 ,V 3) along with the obvious constraint that

P(VIV 2 ,V3 )>0. This is precisely the number of degrees of

freedom in the set of G0 (VIV 2 ) which have only the range

constraint of Eq. (2.16). For higher N-gram-dimensional

systems, P(VI,...,VN) always has 2 N -  constraints on it

from Eqs. (2.12), (2.24), (2.25) and (2.30). Thus we see
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that Eq. (2.13) holds in a degrees of freedom sense.

In conclusion, a method of determining N-gram

statistics from generation parameters using the concept of

a Markov chain was developed and a set of linear equations

describing the constraints on the N-grams was presented.

Using this approach to generating texture patterns a large

variety of textures may be easily generated and examined

using a minimum amount of effort.

2.5 Texture Moments

The above equalities and inequalities provide a full

understanding of the texture generation system in

probabilistic terms. Still further conclusions can be

derived from them. From the above we see more clearly

that the generation parameters G(VlV 2 ,...,VN) determine

the texture completely and thus define the N-gram

statistics P(VI,...,VM) for all M. Also for a given set

of P(VI,...,VM) there can exist an infinite number of

generation parameters, G(VIV 2,...,VN), which would

generate many textures with such statistics if N>M-I.

Provided the constraints on the statistics P(VVI...,VM)

are met just one texture could be generated if N = M-1 or

perhaps none at all if N<M-l. Thus textures with equal

first, second, third and fourth nearest-neighbor

probabilities can be generated.
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Parameters thought to be useful in texture

discrimination may also be easily developed. For example,

joint moments about the mean defined as

I r2 r3

E[(xl- Ip ) (x2 -' 2 ) (x 3 -P 3 ) ... (Xk-"k) k ]  (2.31)

where r. is the order of moment [18]. The rth moment1 1

of x i is defined as

X 1  x 2  xk

where f is the joint probability distribution of the x..

From our binary textures we could define the following

parameters:

E{x 0 } = xif(xi) = i P(xi) =

O-P(O)+1P(1) = P(l)

2 = E{ (x 0 - 1) 2}= (x-P) 2f(x) =

(O-P(1)) 2P(O)+(l-P(i)) 2 P(l)

= P(1)-P(l)
2

E {(x 0 -1) 3} =1-(x-_)3f(x) = (2.33)
3 3

(O-P(i)) 3P(O)+(l-P(i)) 3p (i)

=2P(1) 3 -3P(1) 2 +P(1)

E{ (x 0 -P) (xl-P) } P(1I)-P(l) 2
=t 2 =2

2 P(1)-P(1)2
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E{ (X0-1 ) (Xl-0) (x2-lj)} P(l,I,1)-3P(1,1).P(1)+4P(1)
3= (P(1)-P (1) 2)3/2

where P(1), P(l,l), P(i,1,1) represent nearest-neighbor

(N-gram) statistics although this can be changed to

include non-nearest-neighbor statistics thus creating new

texture parameters. The above parameters are useful in

discrimination therefore only when textures differ in

their (3-gram) or shorter statistics.

2.6 Constraining Second-Order Statistics

We describe now a method which allows

non-nearest-neighbor statistics to be controlled using the

relationships developed in the Sections 2.3 and 2.4.

Because second-order probabilities are of interest we

investigate the conditions required to assure equality of

second-order statistics for non-nearest-neighbor

statistics. If we denote G0(VI,V 2 ... ,VM) as our

generation parameters and P(Vl,V 2, ... ,VN) to be their

associated N-gram statistics then fo'r the second-order

statistics of one texture to be equal to another for the

(N-l)st neighbor distance,
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Pa 'i 2' VM'VM+I''''V N
V2  VN- 1  (2.34)

-'.-. '-'Pb(VI,V 2 ,..., VM+I,-.VN

V2 VN-
1

for VI,VN HO,l where PaPb represents the N-gram

statistics for the first and second texture respectively.

It can also be shown that

E--.."E P(VI'V 2 '''VM ' .... VN)
V2 VN-1

E -... --E P (V1IV2 .... VM )  (2.35)

V2 VN-1

N [Vk+ (-i) Vk GO (VkMVk_+, • Vk I ]
N1 k -'kM+ " -~k=M+l

where

1

V. V.=O
J J

Recall that the N-gram statistics, P, are a function

of the generating parameters G. If the second-order

statistics are to be equal for two textures regardless of

neighbor distance then Eq. (2.35) must hold for all N. It

was previously believed that combining Eq. (2.34) and

Eq. (2.35) yielded a non-redundant non-linear set of

equations that would imply that two textures having equal

second-order statistics must have the same generation

parameters [19]. Julesz [8] also stated that Markov

binary textures having equal second-order probability
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distributions cannot exist. He then proceeded to work

with textures of four grey levels.

In the next section, we will show that binary

textures with equal second-order statistics for all

distances can be generated using a carefully-chosen set of

generation parameters and that these texture contadict the

Julesz conjecture.

2.7 Experimental Results

We may define second-order statistics for

non-nearest-neighbors as

(2.36)

Z . (V,. .. V ... v.
V 2  Vj-1 Vj+I VN

Purks and Richards [3] attempted to demonstrate that

textures equal in second-order distribution could be

generated with visually detectable differences. However,

they merely held second- or third-order statistics equal

between the two textures for small j, while varying

second- and third-order statistics for longer j, that is,

they allowed the second-order statistics for

non-nearest-neighbors to be unequal over some distance.

Examples of this type of manipulation are shown in
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Figs. 2.5-2.10. The corresponding N-grams are shown in

Table 2.2 and Table 2.3. The first column of each

subtable contains the analytic N-grams for texture (a),

top, and texture (b) , bottom, which are found by solving

Eq. (2.14) and Eq. (2.24) given the generation parameters

in the third column. The middle column contains the

actual N-gram statistics as measured from the generated

textures themselves. The input, analytically-solved

parameters will not be equal to the output statistics as

the generation process is random. In other words, the

output statistics are based on measurements taken on a

sample from a population of textures having the

characteristics defined by the input parameters.

Figures 2.5 and 2.6 show pairs of statistics having

equal first- and second-order nearest-neighbor statistics.

That is, P a(V,V 2 ) = Pb(VlIV 2 ). There is also an internal

equality for these textures which may be expressed as

Pa(VlV 2 ) = Pb(VlV2) = 1/4 for all V1  and V2 that are

nearest-neighbors. Visual differences are apparent

between the pairs. Figures 2.7 and 2.8 have texture pairs

which have equal third-order, nearest-neighbor statistics

both within and between the pairs, that is,

Pa(VIV 2 ,V 3) = Pb(VlV 2,V 3 ) = 0.125. The bottom texture

in Fig. 2.7 is a coin flip, purely random texture with the

probability of both black and white equal. It is
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Figure 2.5 One-dimensional Figure 2.6 One-dimensional
Texture Texture

Figure 2.7 One-dimensional Figure 2.8 One-dimensional
Texture Texture
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Figure 2.9 one-dimensional Figure 2.10 One-dimensional
Texture Texture

ii
Figure 2.11 One-dimensional Figure 2.12 One-dimensional

Texture Texture
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interesting to note that this texture is visually quite

similar to the bottom texture of Fig. 2.6, yet the

generation parameters and N-grams differ significantly.

Thus two textures with differing N-gram statistics may be

generated which are visually similar. Figure 2.9 shows a

pair of textures which have equal fourth-order,

nearest-neighbor statistics both within and between the

pairs. That is,

Pa(VI'V 2vV 3 'V4) = Pb(VI'V 2 'V3FV 4) 0.0625 (2.37)

The two are easily discriminated. Figure 2.10 shows two

textures with between-equal, fourth-order nearest-neighbor

statistics. The N-grams are not equal within however.

Figures 2.11 and 2.12 have texture pairs which are

similar in many ways to the pair in Fig. 2.6. Both are

counter examples to Julesz's conjecture that the eye is

sensitive to only first-order and second-order probability

distributions. Each has a texture pair where second-order

statistics are equal for all distances between the texture

pair. Precisely stated, Pa(VIVj) = Pb(V1,Vj) for all j.

These textures are generated using a set of restrictions

discussed in Appendix A.

The textures in these figures are pseudo-randomly

generated. Each texture was tested using a
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goodness-of-fit procedure to insure that textures with the

desired N-grams were generated. This was done for 1-grams

to 10-grams. The procedure is outlined in Appendix B.

The goodness-of-fit depends on the pseudo-random number

generator used, as a poor generator can be guaranteed to

yield poor results in this type of experiment. The

pseudo-random number generator used is detailed in

Appendix C.

2.8 Conclusions

The one-dimensional binary patterns generated give

rise to some basic concepts concerning textures and their

discrimination. First of all they indicate the use of

moments and similar statistics is not optimal at least in

the nearest-neighbor sense as many textures have equal

moments but are visually quite different. However, it

should be pointed our that this may only be characteristic

of some artificial textures and that moments could serve

as good discrimination parameters in many real-world

applications. Secondly, the results indicate a close

relationship between second-order non-nearest-neighbor

statistics and human discrimination. The counter-examples

to the Julesz conjecture indicate that N-grams and

higher-order statistics may be valuable in identifying and

discriminating some textures. Use of these texture
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measures depends on factors such as discrimination

accuracy desired, cost factors for statistics measure and

the nature of the textures involved.

In later chapters, investigation of two-dimensional

textures will be pursued as these correspond more closely

to natural scene textures. The texture generation task

will be approached from a simulation rather than a pure

synthesis point of view. The complexity of controlling

two-dimensional statistics in a synthesis process and

attempts to study their effects on human discrimination

and interpretation of textures is a problem which requires

careful analysis and is beyond the scope of this work. It

is very possible that no applicable, clear-cut results

could be obtained from such a study. However, by

simulating textures, models and processes for generating

similar-looking textures are derived which may be useful

in other applications and some simple statements

concerning human discrimination of textures can also be

made.
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CHAPTER 3

TWO-DIMENSIONAL BINARY TEXTURE MODELS

3.1 Introduction

In this chapter, the concepts used to generate

one-dimensional binary textures are extended to the

two-dimensional case. This model is then used to simulate

natural binary textures. A method for choosing the pixels

in a non-contiguous generation kernel based on a linear

model is described. This is an important concept in much

of the work presented in this thesis. The method for

collecting N-gram statistics is discussed and practical

problems arising in this process are investigated.

Results of natural texture simulation using this method

are presented. Finally, the linear model which was used

to determine the kernel pixels of greatest value in the

N-gram generation process is used to generate binary

simulations. This will lead us to the application of the

linear model to continuous-tone textures in Chapter 5.

3.2 The 2-D Binary Markov Model

In the investigation of natural phenomenon once a

researcher collects enough data he tries to imagine a
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process .. ich accounts for the results. The construction

and development of a mathematical model is often the best

way to do this. done. In some cases, the model may be

extraordinarily complex, in others, exceedingly simple.

In most cases model acceptance cannot be based on "truth"

as the true generating phenomenon is too complex or simply

unknown and so it is based upon model usefulness and "how

well it works". Such "working" models for texture are

presented in this chapter because they have the ability to

simulate some natural textures.

If one can synthesize and simulate natural textures

adequately by using some proposed model the criterion of

usefulness and workability for that model is met. A

researcher may then also apply the model to problems of

texture identification and discrimination with

justification. With any set of texture measures required

for simulation, the informatioa content of the measures is

viaually indicated by the quality of the simulation and

not merely by the percent of correct versus incorrect

classifications when those textures are applied to the

discrimination problem. By adding features important to

texture simulation better methods of texture

discrimination and identification can possibly be found.

Many early texture studies involved the use of binary
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textures generated by one-dimensional Markov processes.

Such work was presented in Chapter 2. In these

one-dimensional models a large vector of pixels was

generated line by line using a set of generation

parameters

GVV 1 ' 2 * F..'V N)
N+1

where

GV (VIV 2 ,.. ,VN) = P(VN+l/VlV 2 ,..., VN) (3.1)
N+1

and P(A/B) represents the probability of A given B. In

the above notation each Vi represents a generated pixel

which has value 0 (black) or 1 (white). Each pixel value,

then, depends on the N pixels previous to it. A

two-dimensional texture image is then formed by breaking

up the large vector of pixels into shorter strings and

stacking them one on top of the other (see Fig. 2.4).

This procedure for large images nearly insured image row

independence (unless N was large) thereby creating only

horizontally oriented textures totally unsuitable for

simulating natural two-dimensional textures.

By allowing N to increase exceeding the short string

line length, two-dimensional (vertical and horizontal)

dependence may be induced into the generating process. A

pixel value then depends not only on the pixels previous
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to it on the same line but also on the pixels above it

(see Fig. 3.1(b)). Thus, textures could be generated as a

time sequence in television raster scan fashion. In

theory, texture dependence could be extended ad infinitum,

however practical considerations concerning the actual

Ngeneration process show us that 2 generation parameters

must be accounted for. As a possible solution to the

storage problem we can choose to ignore. all but N of the

previous pixels in our generation process and we can allow

the pattern of the V. 's to become flexible. This idea1

will be discussed in later sections of this chapter.

Throughout the remainder of this thesis, the set of

pixels, V.'s, on which the next pixel, VN+l, depends will

be referred to as the "kernel" of the synthesis process.

The pixel VN+ 1 will be referred to as the "eye" of the

kernel.

In order to estimate P(VIV 2 ,.. , VN) for a fixed

pattern VIV 2,.. ,V N, all M substrings (samples) of length

N are taken from a parent substring of length M+N-1 and

the number of occurrences of the specific pattern

VIV 2 , . .,V N are counted, then divided by M. This is

equivalent to estimating the probability density function

of a random variable by the histogram of a set of samples.

Ignoring boundary conditions, linear unbiased estimates
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(P's) of the P's may be defined as

M^ 1 N
P(VlIV V -1 (I(k+j)-Vk) (3.2)

k=1

where

1O if V. V

S(Vi ,Vk) = 0 if Vj =

j k

and I(i) represents the ith element of the one-dimensional

texture string from which the parameters are to be

estimated. Equation (3.2) assumes that the V are1

contiguously located in order along a line.

This idea of estimating N-grams, P(Vl,V 2 ... VN) from

a sample parent texture may be extended to the

two-dimensional case. A histogram of occurrences of each

pattern of (VV2,...V N ) is made by passing the

two-dimensional kernel in Fig. 3.1(b) over the

two-dimensional sample parent image. The tally is then

divided by the total number of sample patterns observed to

obtain P(VI,... ,V N ). As was stated earlier,

two-dimensional synthesis is merely an extension of the

one-dimensional case ignoring boundary conditions of the

two-dimensional image.

Although it was not explicitly stated in Chapter 2,

the generation parameters of a texture may be estimated
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for any given set of N V's from a parent texture. These1

statistics have the property

E[GV N+(Vl,V2 ,...,VN)] = GV N+(V 1 ,V2,...,V N )

where

G V N+1 (v lI'v 2 .. vN ) = P(VlV 2,...,v ,VN + 1 )1

A (3.3)
(P (Vl,V 2 1 . ,V N, 0)+P (VIV2 , . N, I ) )

3.3 Seeding the Generation Process

In the one-dimensional texture pattern generation of

Chapter 2, a long binary vector of pixels is broken up

into short strings which are stacked on top of each other

(see Fig. 2.4). When synthesizing this one-dimensional

string, a seed of four binary values is actually required

to begin the process for a 4-gram-dimensional system.

When the Markov process is regular and non-absorbing with

none of the generation parameters equal to one or zero the

process rapidly reaches a steady state independent of the

seed.

A similar thing happens in the two-dimensional case

but here the seed is larger and forms a two-dimensional

frame around the synthesized image texture as shown in

Fig. 3.2. With a two-dimensional texture generation

kernel such as that shown in Fig. 3.1(b), the synthesized
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image texture may be generated without using the bottom of

the frame so the next pixel at each generation step

depends only on pixels above it.

The seeding process may be handled in a variety of

ways. The simplest approach would be to randomly generate

the seed once for the whole image. In this case the pixel

values in the seed frame of Fig. 3.2 remain the same

throughout the generation process. A second approach

would require the random generation of each pixel, Vi, in

the generation kernel that fell outside the synthesized

image texture region at each step during the generation

process. Using this method, the pixel values in the seed

frame change at each pixel generation. A third method

would involve wrapping the image around such that the left

edge of the synthesized image texture joins with the right

side as in Fig. 3.3. In this case a random seed is

required only to begin the process of the top of an inage.

A final method involves the use of another texture,

usually a previously generated texture or the parent

texture, as part of the seed, rather than noise. This

method reduces the noise which otherwise occurs around the

edges of the synthesized image texture.

Regardless of the seeding process, all texture

F ynthesis methods developed in this thesis normally
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converge to a steady state within 5 to 20 pixels of the

border of the image. This was confirmed by repeated

studies of convergence effects on texture simulations. in

most cases, this narrow region is not noticeable and is

included as a part of the result. In some critical

applications these edges could be thrown away.

3.4 Kernel Selection Using The Linear Model

We will refer to the Vi's on which the next pixel,

V N+, depends as the kernel of the generation process.

Geometrically speaking, the V.'s form a kernel "shape" or1

"pattern" which may or may not be spatially contiguous.

For example, in Fig. 3.4 a generating kernel shape is

shown where the V5 pixel directly depends on only some of

the pixels in its surrounding neighborhood. in this case,

V may be generated based on the values of pixels
5

VI, V2 , V 3 and V 4 but is directly dependent on no other

pixels in the neighborhood. This does not imply that V 5

is not related or correlated with its other neighbors. In

fact, the relationships between V11 V2  V3 , V4, and V5

will determine other interrelationships.

A non-contiguous neighborhood of V.'s is used as it1

allows a more parsimonious model for texture generation to

be chosen. An analogy is in simple linear regression (as

defined by Draper[20]) where independent variables which
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do not contribute to the prediction or estimation of the

dependent variable are dropped. In texture generation

this allows the model to be estimated by fewer parameters

and makes the generation-synthesis process more efficient

by reducing the number of computations required. When

generating textures based on N-grams, reducing N reduces

N
the amount of storage required for 2 generation

parameters. By allowing the kernel of Vi's on which VN+1

depends to be non-contiguous, the range of dependence in a

distance sense is increased over that which would be

allowed with a contiguous kernel containing the same

number of V's. This is very important to obtain the

larger structure apparent in many textures. Reducing the

number of pixels in the model also relieves us from the

complex numerical problems of inverting matrices of

unwieldy size, a necessary step in linear model parameter

estimation discussed later in this chapter. We would, for

example, not expect our VN+l pixel to depend on a pixel V i

where the spatial separation between VN+1 and Vi is large.

If that distance is small, however, we would expect a

large dependence.

The method for choosing the proper independent

variables (Vi's) to be included in the generation process

requires special attention. We wish to choose the best

subset of N variables from a larger finite neighborhood of
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T variables, where N<T. Evaluating such subsets and their

corresponding models requires a criterion. Texture

results for each possible model could be visually examined

and compared and the Vi's of the model corresponding to

the visually most pleasing result could be chosen.

T
However, N model evaluations must be done using this

approach. For a simple search through T = 40 points with

N = 12, 5.5 billion models would have to be evaluated!

This approach is therefore impractical and so a

sub-optimal approach which yields a good but not

necessarily the best set of Vi's for our model must be

used.

If we view this problem as one of predicting a

dependent variable, VN+ 1 from a large set of independent

variables, Vi's, then the standard linear model approaches

may be applied. In a statistical sense, independent

variables are values that can be observed but not

controlled and dependent variables are affected by changes

in the independent variables. Thus the value of dependent

variables is said to depend on values or changes in

independent variables. The linear model is just one

approach to explaining the relationship between

independent and dependent variables.

In most linear model applications, the criterion used
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to evaluate the fit of the model to data is mean-square

error. It is desirable in most cases to choose a model

which minimizes the mean-square error. The problem in our

case is to choose a subset of V. 's of size N from a set of, 1

Vi 's of size T such that the linear model employing those

Vi 's produces the minimum mean-square error when compared

to all other possible models containing N V i's. This

T
cannot be done without examining all (N) models again -

however, suboptimal approaches producing a very good, but

not necessarily the best fit are available. One method

employing a forward selection procedure is described in

the following sections.

As a final note it should be observed that we are

choosing the kernel for a non-linear N-gram-based on the

fit of a linear model to sample data. This approach is

admittedly ad hoc and is chosen for simplicity and

computational ease. Regardless, it is believed that the

kernel chosen by this approach is very good if not the

best. If the value of a particular Vi is important to the

prediction of VN+ 1 it will have a high partial correlation

coefficient when it is examined for entry into the model

during the forward selection proceedure. This is true in

all cases when the pixels are binary-valued and is usually

true when the pixels are continuously valued. Still, as

we are not considering all (T) possible sets of pixels in
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the neighborhood, the best model will not always be found

[20].

The linear model which we use to determine the Vi's

in the kernel may be expressed in linear regression form

as

Yk k k *k1,2,...,M

whe re

1

Vl,k

Yk VN+l,k Xk = V 21k (3.4)

VN, k"

a is an (N+l)xl vector of unobservable parameters and kk

is an unobservable random variable such that E(kI = 0.

The sample number is denoted by k and there are a total of

M samples. We can also define matrices X and Y as

X Y1

"'_ Y2
2 2

X =Y (3.5)

T
L XM Y

The most common estimator of g is (X XTY, the

least-squares estimator, so given a parent texture wnich
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we desire to simulate, an estimation of the texture model

parameter S, 8 , may be obtained yielding the generation

model

Y = (3.6)

It is very important to note that the estimation of the

amount of noise present in a texture is usually obtained

by measuring the amount of variation in the parent texture

which is unexplained by our model. This is expressed

numerically in the mean-square error. Therefore, as in

any modelling process, any shortcomings or inaccuracies of

the model will appear to be "noise" (unexplained variance)

and hence the amount of noise will increase.

3.5 Correlation and Partial Correlation

We may define the mean and variance of a variable as

= E[V (3.7)

and

2 2
2 E[(V )- 2 (3.8)

Similarly we may define the covariance of two variables V1

and V as2

YVIV2 = E[VI-pV (V2- V2)]

(3.9)
= E[(VIV2) - VIV 59
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And their correlation coefficient as

YVlV 2

VIV 2  Vl0V2  (3.10)

Using the above definitions we may then define the partial

correlation coefficient of variables V1 and V 2 after both

have been adjusted for V3 as

PVl1V 2 -(PvV 3 ) PV 2 V3 )

P12~-~vv ~~)~vv (3.11)

Each of the above parameters has a corresponding statistic

(estimate of a parameter of a population given an

observable sample of that population) which is chosen to

meet some desirable set of a criteria such as sufficiency,

consistency and unbias of estimate under certain

conditions. Given that the Vi, k s are samples from an ith

order multivariate normal distribution the maximum

likelihood estimates for the above parameters are

k l,k

M V1 (3.12)1M

^k (Vl, k vl ) 2

V2 kl k (3.13)
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E(Vlk - Vl) (V2 , kV2)

V~v2 2k
rV 1V2 = [E(VI,k-V ) 2] [E(V 2, k-V2) 2 I/2 (.4

k k

rV1V2- (rV1V3 )(rv2v3)

1 2 _ _ 2 3
1-r2  3.15)

V1 V3 V2 V3

Second-order partial autocorrelation may be found in a

similar manner using

r r r
rv v v v (3.16)

1 2 3 4 1-r 2
1- 1 -r~

1 4 3 2 4 3

Higher-order partial correlations may be found by

extension of the above [21].

3.6 The Forward Selection Procedure

One approach to finding a good subset of independent

variables is known as the forward selection procedure.

This method inserts N variables into the model

one-at-a-time. The order of insertion is determined by

using the partial-correlation coefficient as a measure of

the importance of variables not yet in the equation. The
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basic p .dure is as follows. First we select the Vi

most correlated with VN+ 1 denoted as Vi , and we find the
1

first-order linear regression equation VN+ 1 = alVi +a 2 .
1

We next find the partial correlation coefficient of V.

(for all j $ i) and VN+ 1  (after allowance for Vi).

Mathematically this is equivalent to finding the

correlation between the residuals from the regression

VN+ 1 = a lVi +a2 and the residuals from another regression

1
V. =blVi +b 2 (wihwe have not actually performed).

The V. with the highest partial correlation coefficient3

with VN+I ,V., is now selected and a second equation
N+ 12

V = clV. +c2 V +c3  is fitted to the data. This
N+1 1 2 3
process continues. After V. Vi ,... ,V. are in the

1 1 i2 q
regression the partial correlation coefficients are the

correlations between the residuals from the regression

VN+ 1 = f(Vi,Vi 2,... ,Vi ) and the residuals from a

regression V . = f (Vi ,Vi 2,...,V i ) (j>q). The Vi with

the highest partial correlation coefficient is now

selected for entry into the linear model. The process is

continued until N V.'s are entered into the model.
1

The final N variables chosen by a forward selection

procedure are not luaranteed to be the optimal set but

given the logistics of the selection procedure, the

solution obtained is usually close to optimal.
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One of the most common procedures for implementing

the forward selection process numerically utilizes

Doolittle decomposition [22]. The Doolittle decomposition

inay be used to find the inverse of the correlation matrix,

R , and the estimates of linear model coefficients as each
p

variable is entered in the model. The correlation matrix

merely consists of the set of correlation coefficients

rvv as defined by Eq. (3.14). It is then factored into

the product of two triangular matrices

R = L U (3.17)

where L is lower triangular and Up is upper triangular

with ones on the diagonal. Partial autocorrelation

coefficients may be obtained easily from elements of this

matrix during its decomposition at each step. For further

details and examples on the forward selection procedure of

the decomposition process see Beyer [18] and Draper and

Smith [20].

3.7 Statistics Collection

In practice, N, the number of pixels in the

generation kernel, is often chosen by computational limits

imposed by finite processing capability or finite computer

memory. The idea of parsimony would also urge the

selection of the smallest N possible. In the most general
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texture synthesis (stochastic) model which utilizes
N

N-grams we find that as many as g storage locations are

required in order to collect the data needed to synthesize

a texture from a parent where g is the number of grey

levels in the texture. This approach calls for N to be

less than 17 for g = 2 (a binary image) if we have only
217
2 = 131,072 storage locations in memory. Approaches to

"stretch" this limitation have been investigated and will

be discussed in a latter section. If we have 8 grey

levels then N must be less than or equal to- 5 as
5

= 32,768. Thus, in synthesizing textures using an

N-gram approach, processor storage capability is the major

limiting factor.

Determining which pixels will be included in the

generation kernel requires an estimate of the linear model

defined in Eq. (3.4). To do this the X and Y matrices of

Eq. (3.5) may be used or the correlation matrix of the

kernel points must be estimated using a parent texture.

The elements of the Xk vector of Eq. (3.4) are

obtained by passing the kernel window over the sample

parent texture and recording the pixel value corresponding

to the position of each Vi in the window. The kernel is

assumed to be completely within the boundary of the parent

texture. A sample may be taken at all possible positions
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in the parent texture or a random sample of points may be

chosen if the parent texture is very large to reduce the

number of computations required. In actual practice, no X

matrix is ever formed. To obtain the correlation matrix

of the sample set, R, (and from that B) we need only the

sum of squares cross products, Vi and V., over the sample

set according to Eq. (3.14).

The elements of the correlation matrix for many

kernel patterns often contain redundancies. For example

the spatial relationship between the pair V1  and V2  and

the pair V3 and V 5 in Fig. 3.4 is the same. Estimating

'he correlation for these two pairs of points from a

sample will yield nearly equal values if the sample size

is large and the overlap of samples used to estimate the

correlation values is large. In short,

rV1V2 1 rV3V4 (3.18)

In more mathematical terms, let I(nl,n 2) denote the

random texture field where n 1 and n 2 are integers

representing the coordinates of points in our sampled and

quantized image. Let n be the vector of coordinates

(n ,n ) . From Section 2.1, second-order or 2-gram1 2

statistics are given by the set of joint density functions

P )(Vi,V j ) (3.19)
n,m
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for all possible vectors n and m, where V1 and V2 are the

pixel values of the random variables I (n) and I (m) ,

respectively. If the random field is homogeneous, that

is, invariant through translations then

P P (3.20)n ,m n-m ,

from Eq. (2.2).

If we assume that our two-dimensional texture is

homogeneous and stationary we might propose that

Eq. (3.20) is true by definition. A word of caution is

necessary at this point. Estimating the elements of the

covariance or correlation matrix using the assumption of

stationarity and homogeneity can yield correlation

matrices having negative determinants, in violation of the

fact that non-singular covariance matrices must be

symmetric positive definite. The violation occurs because

the sample is not homogeneous and stationary. Therefore

the type of assumption expressed in Eq. (3.20) should only

be used for estimation when sample sizes are very large

and are known to be homogeneous and stationary.

The assumption of Eq. (3.20) can be very powerful in

a computational sense for large samples as the calculation
A

of cov-r iance (or correlation) matrices can be time

conruingnj. The complete covariance matrix for a
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contiguous 10 x 10 (100 element) kernel contains 10,000

entries. Of these, 4050 are redundant by simple symmetry

as EV.V. = EVV. wh ich implies r = ri 3 3 1 vivj  vjv i

Computing all cross products and sums to estimate this

matrix from a 512 x 512 image requires over 1.025 billion

inultiplications and 1.05 billion additions. Utilizing the

concept of homogeneity, this may be reduced to 0.05

billion multiplications and 0.075 billion additions which

is significantly lower.

Once the covariance matrix of a kernel is determined,

the linear model containing the Vi's of the kernel may be

obtained. It is advisable to make the kernel large as

*ore texture information is contained over large

distances. In many cases, there are relationships between

pixels separated by great distances especially if the

texture is coarse or highly regular (periodic). 1n

practice, however, large matrices may be numerically

ill-conditioned during a decomposition or inversion

process and so they must be avoided. Also computer

storage limitations must be considered. In this study, no

matrix larger than 100xl00 was decomposed or inverted for

these reasons. This constraint required a multiple-pass

approach.

First, 100 Vi's (usually closest to the kernel eye,
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V N+) were chosen for examination. They were entered into

the linear model in a forward selection .aanner until it

was determined that entry of additional Vi's would be

insignificant. Insijnificance is indicate(I both

statistically by considering the reduction in the su-n of

squares due to the entry of a variable into the model [201

and also by the value of which approaches zero so thei

variable V. becomes insignificant. On the second pass,

variables not tried in the first pass are exaoined and

tested for possible entry into the model. ivgain, those

which are significant are kept and the others are

discarded. On the next pass, any variables not ex aiined

in the first two passes may be examined. The process

continues until all Vi's have been tested for possible

entry into the linear model at least once.

This multiple-pass process, as the forward selection

procedure which it employs, is not guaranteed t-) producs

the best model but will provide ari excellent model

nevertheless. The final mNodel will also be parsimonious.

This will reduce the number of parameters in our model and

aid in the efficiency of the generation process.

3.8 Results

Once the points for the kernel are chosen based on

the linear model derived using the methods described in

68



the prev ious sections, estimates o f the *jenerd t i)n

parameters to r the texture arc obtained usinj colicepts

discussed in section 3.2. Practical considerations

require us t-o limit N, the number of pixels in the kerncl,

to 12 to 18 depending on the processor storage available

N
as 2 values must be stored. 'Tnese '. s are then used to

generate each pixel along a row, row by row until a

complete two-dimensional texture is obtained. For each

pixel the appropriate generation parameter estimate is

found and a uniformly-distributed pseudo-random variable

is generated. Based on these two values, a black pixel

(0) or white pixel (1) is generated.

In practice, not all of the generation parameters may

be estimated when N is large because all possible patterns

of VIV 2,...1VNVN+1 may not be present in the sample

image or there may be few of them. Smaller samples can

cause inaccurate estimation of the G's as the variance of

our estimate is larger and therefore the expected error of

our estimate is larger than would be expected with a

larger sample size. In these cases it is important to sum

over the least significant kernel elements and estimate

GV N(VIV2,...,VN )  by G VN+ (Vi,V i+ ...,) .  In our
N+1

study, this was done if the sample size to compute

G VN+(V I,V 2,...,V ) was less than 10. The variable i is

increased until this condition is met.
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i_. ure simulations using this method are shown in

Figs. 3.5(b)-3.14(b). Visually, the results are very

good. As the estimated texture generation parameters are

approximated using statistics gathered from the full

parent texture, non-homogeneity in the parent texture will

cause an "average" texture to be synthesized. The

simulation of straw (Fig. 3.7) is poor because of its

non-homogeneous nature (specifically the directionality of

the stalks in different parts of the image) and exhibition

of detail (specifically individual non-conforming single

stalks). A similar observation may be made with respect

to the parent textures of grass and water but in these

textures the non-homogeneity is not so pronounced. As we

are attempting to synthesize textures and not merely

"image code" the parent textures, details and

non-homogeneities will be lost in the synthesis process.

The bark texture is among the most difficult to

simulate due to its very unusual macro-structure. Still,

the N-gram simulation looks remarkably similar to the

original when windowed regions 20 to 40 pixels square are

observed.

The kernels used to generate these N-gram simulations

are shown in Table 3.1. A clear-cut relationship betwben

the textures and the kernels found using the linear model
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Figure 3.5 Grass
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Figure 3.6 Bark
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(a) Original Texture (b) N-gram Simulation

Cc) Linear Model Simulation

Figure 3.7 Straw
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(a) Original Texture (b) N-gram Simulation

(c) Linear Model Simulation

Figure 3.8 Wool
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(a) Original Texture (b) N-gram Simulation

(c) Linear Model Simulation

Figure 3.9 Leather
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(c) Linear Model Simulation

Figure 3.10 Water
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(c) Linear Model Simulation

Figure 3.12 Wood
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(a) Original Texture (b) N-gram Simulation

(c) Linear Model Simulation

Figure 3.14 Raffia
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Table 3.1 TWO-DIMENSIONAL N-GRAM TEXTURE
SIMULATION KERNELS

GRASS BARY,

00

00

LEATHER WATER

0 d~bho

~0 0 EE]0 0 0 0 0

0

0 00

0
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approach is not always evident. Some kernels, such as

those for wool and water, seem to have a vertical or

horizontal structure possibly resulting from the structure

of their corresponding textures while others, such as the

kernels for wood and raffia, do not. Still, the

non-contiguous kernels produce excellent results.

3.9 Extension of W-i;ram YModel

rhe N-gram model may be extended beyond the fixed 4

set by limited processor storage. Tlhe requirement that C

must be estimated based on no fewer than q (wniich was set

to 10 in our study) samples already reduces the storaje to

e ,iaximum of M/q non-redundant parameters whure M1 is the

total number of samples in the parent texture image. For
5

a 512x512 image, M is approximately 2. 5xlO . Given

1 = 0, this implies that a MaximuRI of 25,000 generation

parameters estimates must be stored. 3y increasin-3 q,

further reduction is possible. Meanwhile iN is permitted

to increase without bound to sample size limiLations. For

frequently occurring patterns, larger N's allow increasing

dependency over larger distances. This is most desirable

in regular and coarse-structured textures.

5earching for the proper generation parameter at each

step in this type of process is complex. In the earlier

N-gram storage, each pattern of 0's and l's actually forms
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a binary address to the location in memory of the desired

G. In the extended case a sort, search, or a series of

comparisons along with some intelligent preprocessing is

required. Efficiency is reduced.

To illustrate the effect of model extension the

texture raffia was used. Figure 3.14(a) shows the

original and Fig. 3.14(b) is the synthesis obtained using

a kernel containing N = 14 pixels. Figure 3.14(c) is the

linear model synthesis. Figures 3.15(a) ,(b) ,(c) were

obtained using three different texture kernels with N = 22

points. Far more structure in these extended model

versions is apparent. This i-s expected as at each

generation step, the next pixel is allowed to depend on

pixels further from it. As the pixels in the kernel

become mnore widely spaced the synthesis becomes more

structured but small, local regions often become more

distorted and less raffia-looking because the information

used in the synthesis process is more global than local.

3.10 Linear Model Generation of Binary Textures

The process of choosing the V.'s to be present in thei

texture generation kernel described in earlier sections of

this chapter actually yields a simple linear model which

can also be used to generate binary textures. The model

which results from the determination of the generation
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(a) N-gram Extended Model (b) N-gram Extended Model

(c) N-gram Extended Model

Figure 3.15 Raffia

84



kernel may be expressed in equation form as

VN+l,k = 1Vl,k +  2V2,k +...+N VN,k+ a0+ :k  (3.21)

or more simply as

VN+ = 1V +  2V2+..-+ NVN+ 0+VN+1 al 1 ~2 2 N 0 (3.22)

Once the estimates of the 8i's are known, a pixel VN+1 may

be calculated from a set of given values Vi plus an error

C. In one-dimensional analysis this is sometimes known as

the autoregressive time series model [24]. For binary Vi

a value of VN+ 1 will be produced which is non-binary. To

generate binary data using this model will therefore

require quantization.

In the N-gram approach to texture simulation, the

randomness of the texture is induced by the generation of

a uniformly-distributed pseudo-random variable during the

generation process. The comparison of this value with the

estimate of the generation parameter, G, yields the next

binary pixel. A similar type of randomness must occur in

the generation of binary textures using the linear model

of Eq. (3.22). This randomness is expressed in the model

in the error term C.

We can obtain an estimate of the distribution of e in

the same manner as we estimate the a's of the model. This
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may be done by applying the model to the sample data from

which it was derived and observing the errors. That is,

the linear model kernel is passed over the parent texture

image and at each point a V is calculated based onN+I

Eq. (3.22) without the error term. Then V -V isN+I N+I

calculated where V is the actual value of V in the
N+1 N+1

parent texture. The histogram of the values can be used

to estimate the distribution of E. As one step further we

could assume that has some known distribution such as

Gaussian or normal, and merely estimate the parameters

necessary to define this distribution. In the normal

distribution case, only the standard deviation (or

variance) of needs to be estimated. The mean of E is

zero in the linear model, least-squares distribution.

Our generation process then consists of the

calculation of E jVi+ 60 to which we add a random,

normally-distributed error term c and this value is then

quantized to 0 or 1 based on comparison with 0.5. Results

using this generation method are shown in Figs. 3.5(c)

through 3.14(c). In these figures, N was allowed to be as

Nlarge as 70 as only N coefficients (not 2N ) need to be

stored along with a the estimate of the error standard

deviation.

Te kernels used in the linear model simulations are
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shown in Table 3.2. The linear model simulations are

slightly inferior to the N-gram simulations but the

degradation is far less than we would expect froin such a

massive compression of information (which is approximately

2 to 70). The results were good enough to encourage the

application of the linear model to continuous-tone

textures.
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Table 3.2 TWO-DIMENSIONAL BINARY LINEAR MODEL
TEXTURE GENERATION KERNELS
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CHAPTER 4

ALGEBRAIC RECONSTRUCTION TECHNIQUE MODEL

4.1 Introduction

Julesz's conjecture [8] that second-order statistics

are sufficient for human visual texture discrimination

provides a useful estimate of the amount of information

necessary to reconstruct a texture field. Although

counterexamples to that conjecture have recently been

found [4,25], and are shown in Chapter 2, it is a good

first-order approximation. Examples of the use of that

upper bound for texture analysis can be found in [14,26].

Therefore it is very tempting to use it for synthesizing

natural texture fields. That is, we may attempt to

simulate textures based on generation parameters estimated

from 2-gram statistics over various distances. This

approach requires fewer statistics to be collected from a

parent texture as only 2-grams versus N-grams are

collected.

This chapter illustrates that we must "invent"

higher-order statistics to use the Markov generation

coefficient approach for texture synthesis if we limit our

knowledge of the original random field to second-order
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which involves (N+) th-order joint density functions.

Therefore if N is larger than 1 and we are given only

second-order statistics, P(Vi,V.), we have to "invent"

higher-order densities P(VIV 2 ,...IVN+I). Mathematically,

the problem can then be stated as follows: given N random

variables V1I...,VN such that for every pair (Vl,VN),

l<i,j<N and i / j, we know the joint density function

P(ViVj), find a function P(VI,...,VN) which satisfies

P(VIV 2 ,...,VN) > 0 for all VI,...,VN (4.2)

... .... 
V1 Vi- 1 Vi+ 1 Vj 1 Vj+ 1  VN (4.3)

P(Vi,V j )

Here the P(V.,V.)'s are sometimes called the inarginals of1 J

P(V ,...,V N). Assuming quantization with g levels, the gN

unknowns P(V1 ,..., VN) can be stacked as a vector and

conditions (4.2) and (4.3) correspond to a linear

programming problem:

Ap =  (4.4)

> 0 (4.5)

where vector i; is obtained from the functions P(V.,V.) and

matrix A of size ((M)g2)XgN contains only ones and zeroes.
2

For any reasonable values of N and g, this is a set of

linear equations and inequalities of fairly large
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dimension and the usual solution techniques such as the

simplex method [4] become very limited.

4.3 Solution Through Algebraic Reconstruction

Techniques (ART)

The ART algorithm was introduced by Gordon, Bender

and Herman [27] for solving the problem of

three-dimensional reconstruction from .projections in

electron microscopy and radiology. This is a

deconvolution problem in which a function in a

higher-dimensional space is estimated from its

experimentally measured projections in a lower-dimensional

space. For an excellent review of those techniques see

Gordon [281.

The problem stated in Eqs. (4.2) and (4.3) or (4.4)

and (4.5) is precisely of this form, where the projections

are the second-order joint density functions. ART is

therefore directly applicable. The simple intuitive

interpretation is that each projected density is thrown

back across the higher-dimensional region from whence it

came, with repeated corrections to bring each projection

of the estimate into agreement with the corresponding

measured projection.

Formally, we use an iterative scheme defined by
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S(q+1) (q)(q

P(V I , . . . , V N )  = (V l , . . . , V N4 ) + t c ~ q  (VI,...,V N )

(4.6)

For all values of Vl,..., VN for q = 0,1,...

where the correction term c(q)(Vl,...,VN) is given by

c (q) (V1 , ... ,VN) =

N N-I N (4.7)

N-2 Z(P(viv -'P(VIv.
g (2) i=l j=i+l

and P(Vi,Vj) is the actual marginal measured, for example,
S(q)

from an original texture field. Here P (V.,V.) is the
1 )

marginal corresponding to the reconstructed density at

iteration q.

We may express this in words as follows. The

iterative process may be started with all reconstruction
(0) N

elements set to a constant (P (V ,...,V ) =l/g for all
1 N

(VI,...,VN). In each iteration the sum of the differences

between the actual and the reconstructed marginals is

computed and evenly divided amongst the gN-2

reconstruction elements. If the correction is negative,

it may happen that the calculated density becomes negative

at some points. This problem can be alleviated by using a

modified iteration scheme defined by

'v (q+l) v (q) (q)P (VI,...,V ) N MAX 10,P (VI...,vN )+tc (V1 , ... ,v N

(q+l) (4.8)
therefore guaranteeing P > 0 (constrained ART [28]).

It is of course necessary to determine when an iterative
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algorithm has converged to a solution which is optimal

according to some criterion. This is in turn related to

the problem of finding the optimal value t of t. Variousq

criteria for convergence have been devised 128]. For

simplicity, we chose the mean-square error

_ j~ q 
2 ,- %

C 1q112 lm-m i 2  (4.9)q

between the measured and calculated marginals where 11.11 2

is the usual euclidean no.-m and m is defined in Eq. (4.4).

To derive the optimal step size, t, for each

iteration we rewrite Eq. (4.6) in vector form as

(q+l) P(q)+ t ( q ) (4.)

Multiplying both sides of Eqs. (4.10) with matrix A

(Eq. (4.4) we obtain

(q+l) m(q)+ t (q) (4.11)

where

-* d(q) (q)
o -q) = A c (4.12)

and subtracting the actual marginal vector m from both

sides of Eq. (4.11) yields

11 e  (q + l ) 1 12  = 11 e(q)_ ta (q) 1 122
2= 2()

2) I 2 t (q) (q) *(q) 2 (4.13)t2 d q 2 2 t8 .e e Is [ 2

' lereor:? th-" error ;7q+ 1 at iteration u+1 is inini,nized f,,r

q+9
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(q) .(q)

q= (q)2 (4. 14

2

where denotes the inner product.

A dual approach also explored is based upon thE

analysis of Eq. (4.3) in the Fourier domain. It car

easily be shown that the initial problem stated b

Eqs. (4.2) and (4.3) is equivalent to an interpolation

problem in the Fourier domain. The major drawback of this

approach is the difficulty to ensure the positivity of the

inverse Fourier transform of the interpolated function.

Therefore this method was not pursued even though it may

be the case that "good" interpolating functions will

alleviate that problem.

The basic philosophy of the two approaches just

discussed is that Nth-order joint density functions are

"invented" to satisfy exactly the constraints stated in

Eq. (4.3). Their obvious disadvantage is the high

dimensionality (gN for an Nth-order joint density

function) of the data that is to be stored compared with
N 2

the usually lower dimensionality ( (1 )g for the

second-order joint density functions) of the data that is

effectively used.
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4.4 Results and Conclusions

The iterative process defined in Eq. (4.6) may be

halted at any number of iterations, q, and a texture may
4.

be generated using the value of p at that point. However,

it should be kept in mind that the success of a texture

(q)synthesis depends on making the error c as small as

possible and that the texture generation process is

sensitive to this error. It has also been found by

experimentation that the p contains many values which are

set to zero by implementation of constrained ART. This

tends to cause the Markov texture generating process to

become absorbing, which causes patches of white and black

or streaks and lines to be generated. This is eliminated

by setting those values which are zero to a small non-zero

value, 6 , in the generation process.

Using the above concepts, texture simulations of the

binary textures water (Fig. 4.1(a)) and raffia

(Fig. 4.2(a)) were generated (Figs. 4.1(b) ,4.2(b)).

Textures similar to those in Chapter 3 employing actual

Nth-order statistics (N=14) were also generated

(Figs. 4.1(c),4.2(c)) and are included here for reference.

The Vi in the generation kernels for the ART model and the

N-gram model were chosen using the ideas described earlier

in Chapter 3.
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Figure 4.2 Raffia
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At the onset of investigation of the Algebraic

Reconstruction Model it was hoped that this approach would

be useful for generating continuous-tone textures.

However, using it to generate binary textures revealed

that the convergence for the iterative process was very

slow even with the optimal step size t. Each iteration

required much computation and the storage required for the

N-grams was large. More than eight hours of CPU time on a

DEC KL-10 were required to execute the large number of

iterations required for a visually pleasing solution.

Generating textures based on estimated N-grams which is

detailed in Chapter 3 is probably more efficient and less

complex computationally. This work did lead to other

texture simulation models (see Faugeras [29]).

The results using algebraic reconstruction are nearly

equivalent to the results using complete N-grams as

second-order statistics collected from binary textures

contain a great deal of information. Close examination of

the textures generated using algebraic reconstruction on a

high-resolution display device reveals a high random noise

level. The computational requirements and the final noise

level indicate that the N-gram method of generating

textures is much less complex and yields better visual

results than the method employing algebraic

reconstruction.
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CHAPTER 5

CONTINUOUS-TONE LINEAR TEXTURE MODEL

5.1 Introduction

In this chapter, the concept of using a linear model

for generating binary textures that was briefly discussed

in Chapter 3 is extended to multi-grey-level (256-level)

or continuous-tone textures. Pictorial results of the

application of this model to simulation of a variety of

textures are presented.

The application of the linear or autoregressive model

to time series processes has been extensive. These

applications, which range from weather forecasting to

stock market predictions, primarily utilize the models and

concepts introduced by Box and Jenkins [24]. Many authors

have expanded and elaborated on their approaches

(30-38,62]. Some researchers have applied these ideas to

texture simulation, in fact, the Box-Jenkins

autoregressive model is one of the very few approaches to

texture synthesis presented thus far.

McCormick and Jayaramamurthy [2] were perhaps the

first to make a notable attempt to simulate natural
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textures using this approach. Their work consisted of a

discussion of the Box and Jenkins autoregressive (AR),

moving average (MA) and autoregressive integrated moving

average (ARIMA) models including estimation of model

parameters and adequacy of model fit. (These terms are

later defined in this chapter.) A very simple model was

then used to simulate two very similar textures which

closely resemble the wood texture of this study by filling

in the holes of a parent texture using the derived model.

Only two textures, both exhibiting a wood-grain-like

structure, were used. Similar work was done later by Tou,

Kao and Chang [11]. Unfortunately, the results of their

simulation of these textures were displayed using a

printout of Chinese characters and so the degree of

success of their method is unclear. The appearance of

texture synthesis results on a computer printout will

confuse most observers unaccustomed to such crude image

displays. The models were again very simple and contained

no more than three terins in the linear model summation.

Deguchi and Morishita [12) attempted to use the linear

model to segment and partition textures. Their approach

was only partially successful.

In the above simulation attempts, the models used

were simple. rhe process of collecting statistics and

estimating parameters is complex. In some cases, previous
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authors attempted to use the complex Box and Jenkins ARIMA

model which leads to difficult model parameter estimation

if the number of model elements is greater than two or

three.

In our study, the simpler autoregressive model is

used and is allowed to contain a large number of

parameters. This is possible using the assumption of

homogeneity (stationarity) combined with the forward

selection process of choosing non-contiguous generation

kernels as described in Chapter 3. These models are

extended further by allowing second-order autoregressive

models and non-stationary noise. Results of texture

simulations using these models are included in this

chapter.

5.2 The Linear Autoregressive Model

In Chapter 3 the linear autoregressive model, used to

determine the elements of the generating kernel, was

expressed as

Yk =  k +  
F_ kk= I,...,M (5.1)

where

Yk = 
N+I,k
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and
1

Vl,k

V2
Xk = ,k

VN k

Here 8 is an (N+l)xl vector of unobservable parameters and

6k is an unobservable random variable such that E[Ck] = 0.

The sample number (index) is denoted by k and M is the

total number of observations. We can also define the

vectors Y and and the matrix X by

x 1 1

2  2 2

X = = = (5.2)

XM YMM

and our model may be expressed as

= xA + ' (5.3)

In equation form, dropping the k subscript, the model

becomes
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VN+1 = BlVl+ 2V2 +...+ N V N+ 0 + e (5.4)

Sums and sums of squares leading to the calculation of the

correlation or covariance matrix of the parent texture are

obtained by passing any chosen generation kernel pattern

over the texture. From this matrix, the least-squares

parameter estimate of 6 is obtained. The multiple-pass

forward selection process described in Chapter 3 leads to

a final linear autoregressive model which is then used to

generate textures.

5.3 Autoregressive and Moving Average Models

In this section, we will introduce the general linear

model as defined by Box and Jenkins [24] and Grabill [39]

and discuss the relationships that exist between it and

the autoregressive and moving average models. When the

autoregressive model is extended without bound it is

essentially equivalent to the general linear model and the

moving average model is a subset of general linear models.

Allowing for a large model reduces the complexity of

parameter estimation and allows easy selection of a

generating kernel and model.

Many of the equations in this section also assume

that the texture is one-dimensional and that the

g3enerating kernel is contiguous. That is, VN+ 1 follows
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V N  This is consistent with notation presented earlier if

images are expressed in lexicographic [40,41] notation as

one-dimensional vectors. The non-contiguous kernel may be

expressed as contiguous if the 8i are zero in the model.

The output of a linear filter whose input is white

noise Ek may be described using the general linear time

series model

VN+1 = 6N+1 + 0CN + I1EN-1+ 12 E N-2 + ...

= EN+I+ E jN-j (5.5)
j=1

where +N+l=Vx+I- Pand P is the mean of the process,

assumed to be stationary here. Thus VN+1 is a weighted

sum of present and past values of the white noise process

Ek £k usually has zero mean and constant variance a2

The auto-covariance is also defined as

2

¥t = E[£kEk+t] = (5.6)
0

Notice that Eq. (5.5) may be written in a different

form

105

.......... ... ........ . .... , JAL



= .+ T + TY + .
N,+1 7O N i N-i 2N-2 N+1

(5.7)

E i V N-j+ CNi

Equation (5.7) may be derived from Eq. (5.5) as

F-N+lD 6N+ ~jN-j (5.8)

j=0

N ~N aIjN-j (5.9)

j=i

Therefore

N+ N+i1 O[VN+(- o (5.10) iN

j=i

Similarly

EN-i N- (5.11)
j=2

N = F-+ +1Y l--+1 )D :- (5.12)
j=2
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_ 
1- 4 

...........

00

N+l 0 N+ 0)1IN-1 -0 ) ( N-j
j=2

And so, by continuing this process Eq. (5.7) is found.

It may also be shown that Eq. (5.5) can be rewritten

as

VN+ 1 = l(B) 6N+1 (5.13)

where B is the backward shift operator

= C (5.14)
Bk ek-i

BJck = Ek-j (5.15)

and

0o

ip(B) E = _B (5.16)

j=0

where '_I= 1. P(B) is often called the transfer function

of the linear filter.

As certain constants or parameters must be estimated

from the sample data available it is sometimes important

to minimize the number of parameters required to

accurately represent a process. This simplifies analysis

of a model and reduces the number of required

computations. The general linear model containing an
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inzin.k umber of terms is of little practical value.

Therefore, if is often expedient to allow the general

linear time series process to be reduced to a model in

which the current state of the process may be expressed as

a finite aggregate of previous values of the process and a

driving error value E . This autoregressive (AR) modelN+l

may be written as

N+1 ON + N N-+ 21N-2 + ' ' ' +1pVN+E (5.17)

We may define the autoregressive operator O(B) as

= (1-0IB- p2B2
- . . - p BP ) (5.18)

and thus Eq. (5.17) may be rewritten as

~(5. 19)
(B) VN+1 = 'N+I

The moving average (MA) model may be written as a

special case of Eq. (5.5) where only the first g+1 of the

weights are non-zero. This process is

VN+1 6N+I - 0CN -  1CN-I- p - N-p

q (5.20)

N+1- 0jEN-j

j=O

As in the case of the autoregressive model, we may write
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the moving average operator as

6 (B) = (1-8 0 B-8 1 B 2 - . - 8q q B q+l) (5.21)

and thus Eq. (5.20) may be rewritten as

VN+ 1 = O(B) N+I5.22)

A model incorporating the finite-term concept of both

the autoregressive and moving average model may be written

as

V =V+ +.+y +
N+I O N IN-I p N-p N-I

(5.23)
0 N- e1EN- - - N

0 N N-1... q N-q

or

P(B)V = O (B)EN+I (5.24)

This mixed autoregressive-moving average (ARMA) processing

can be thought of as the output from a linear filter
N+I

whose transfer function is the ratio of two polynomials

0(B) and P(B) when the input is white noise Et -

An Example

To show the relationship between an autoregressive

process and a moving process we will consider the simple

example
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V (5.25)VN+1 = N+I-0ON

which is a simple moving average process. The above

equation indicates thmat

0N = 6N-OENI (5.26)

This implies that

N N +00CN-1 
(5.27)

Substituting Eq. (5.27) into Eq. (5.25) yields

N+1 0 N 0C N-i +  N+1 (5.28)

and by a similar substitution of

N VN +9EN2 (5.29)

into Eq. (5.28) we see that

=2 3 + (5.30)
N+I 0 N 0 N-I 0N-2 N+1

Continuing this process yields

N+I =- 0V(N+I)-j+FN+1 (5. 31)
j=l

Thus, a finite moving average process may be written as an

infinite autore.jressive process.
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5.4 Parsimony Between Models

The above equations show how the general linear time

series model is related to the autoregressive, moving

average and autoregressive-moving average models. The

concept of parsimony suggests that is is usually desirable

to express a model with as few terms as possible.

However, it has been shown that if we are willing to

sacrifice the concept of parsimony and deal with infinite

(or large) general linear models we can use the infinite

autoregressive model (Eq. (5.7)), also known as the

general linear model, to describe any general linear time

series process.

In theory, it is possible to approximate as closely

as desired any general linear time series process with a

finite autoregressive process of order p by allowing p to

increase until the desired closeness is obtained. In

application, however, the estimation of model parameters

Ti of Eq. (5.7) may be less accurate than desired due to

the noise ek in the system. That is, the noise of a

system will cause error in the estimation of the ni to the

extent that some 7 . s are believed to be zero or are
1

estimated so poorly that an inaccurate model is developed.

It is not clear to what extent the accuracy of a model is

improved in such a case by using an autoregressive moving

111



average model. It is clear, however, that going to such a

model causes increased complexity in the parameter

estimation process and induces difficulty into the

hypothesis testing process which is simple in an

autoregressive model case. Parameter estimation for the

ARMA model requires a inultiple-pass, extensive and

computationally-complex iterative process which is

complicated by the required extension of our model in a

two-dimensional image to many points and very large sample

size. For this reason, the ARMA model was not used for

texture simulation in this thesis.

5.5 Results

The linear (autoregressive) model of Eq. (5.4) was

used to simulate a variety of natural textures.

Stationary, independent Saussian noise was used to drive

the synthesis process. The variance ot thie noise was

estimated by applying the model to the sam)le data and

observin- the prediction errors. Images resulting from

the fittingj of estimated models to sample data are shown

later in this chapter. These errors, which are often

called residuals, are pixels formed by tile difference

V N+1-VN+1 wiere V N+ is the actual observed pixel vaLlue of

tne sample parent imaje and VN+ 1 is the corresponding

fitted value obtained by use of the linear model. The
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standard deviation of these errors can be measured and

used as the standard deviation of pseudo-random

normally-distributed noise in the generation process.

Actually, this information can also be obtained during the

decomposition of the covariance inatrix.

The number of pixels in each generation kernel, N,

varied from 30 to 60. The generation kernels used for

each simulation are shown in Table 5.1. The simulation

results are shown in Fig. 5.1(b) through Fig. 5.11(b).

These simulations indicate that the linear model

using stationary gaussian noise produces acceptable

simulations of a variety of textures including grass,

wool, leather, sand and water. As with the binary model,

the simulation of bark (Fig. 5.2) shows absence of macro

texture. The non-homogeneities present in the straw

texture (Fig. 5.3) cause an "average" straw to be

generated which is very similar to the binary texture

simulation. The cloth texture (Fig. 5.4) is composed of

two subtextures and therefore simulations made using

statistics measured over the whole image will be a mixture

of the two subtextures. The simulation of raffia

(Fig. 5.11) has good structure as the linear model kernel

is large but sharp edges present in the original texture

are absent in the simulation. The same is true of the

113



Table 5.1 TWO-DIMENSIONAL LINEAR MODEL TEXTURE
GENERATION KERNELS

GRASS BARK

0 0
oa0

0 0 0
0

0 0

STRAW CLOTH

0

0 

0.
a 3 0 cm aa m -0

0000 0

aa

WOOL

0a
a 1 0~ 0

00 cc 0 9
0 0 0 0 C3 0

00 00 0 0
0 m 00 00

o CP 0 0

00 . 0

WATER WOO:

0

00 -0 000 0

00 
0 C

0

0 a

00

coc

0 0
0

a 0

0

008 0 0
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simulation of sand when the texture is examined in detail

on a high-resolution display device.

5.6 Rotation and Magnification

The effects of image texture rotation and scale

changes on the covariance function of a texture can be

determined by expressing each as a linear transformation

of the linear model. Using the notation of the linear

model as expressed by Eq. (5.1) we may define

M
-

X 1 =k (5.32)
k=l

Using this notation, the maximum likelihood estimators for

the mean and covariance matrix of N-variate normal

d is tribut ion, N ( : -%r

N( :,r) = (2)-N/2 1/exp[-1/2(-) (5.33)

are

'x (5.34)

and

M

=1 - - k (5.35)
k=l

Relating this to the facts discussed in sections 3.4, 3.5
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and - , we see that the linear model parameter estimates

are obtained from the maximum likelihood estimators for

the mean and covariance matrix.

If we then define a linear transformation H such that

+ -+

k = HXk (5.36)

Then

M
+ = 1 ~ 1 H( (5.37)

M ML...k HP^
W k=1 X

and M -X* HX)
( = >HX - HX) (HX

=M .jk k k~x
W k=l

M
1 V'- +TT HTT
H -H k(X - Xk) (X k X T

k=1

M (5.38)

H R (X k - )(X - X) H

k=1

^ HT=HI H

Thus if our model is transforied linearly, the estimates

required for linear model parameter estimation can be

obtained from original model estimates and the

transformation itself.

Rotation may be thought of as a linear transformat'ion

of coordinate systems. Where our discrete image is
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considered to be rotated about an axis by angle e and the

standard row, column notation is used (I (nl,n 2 ) represents

the pixel value for image I at row nI and column n2 )

Irotated (n l , n 2) =

(5.39)
Ioriginal (n 2sinO+n 1cosO,n 1 sine+n 2 cose)

Usually the row, column addresses in the original image

are fractional. Therefore, these pixel values must be

specially defined. A widely accepted practice is to

estimate each value as a function of pixels surrounding

it. The most likely candidates are nearest-neighbor and

bilinear interpolation[42]. It will be shown that in

either case, the new value may be expressed as a linear

combination of values in the original image.

A very similar result may be derived in scale changes

of a texture. Here

Iscaled(nl,n 2 )  -origina (nl a,n 2a) (5.40)

The origin of the coordinate system defines the center of

the image magnification or reduction. In rotation, the

origin of the coordinate system defines the axis of

rotation. In both image magnification and rotation, the

row and column addresses of the pixel in the rotated image

may be fractional. Again, the value may be expressed as a

linear combination of values in the original image.
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Consider the example shown in Fig. 5.12. With angle

of rotation 0, origin V5 and magnification of 4/3, using

bilinear interpolation (between rows the columns) we have

W1 = [0.65 V1 +0.35 V 41-0.375+[0.65 V2 +0.35 V 5].0.625

W2 = [0.375 V 2+0.625 V ]-0.35+[0.375 V 3+0.625 V 61.0.65

w3 =v 5W3 V5
(5s.41)

W = [0.625 V4+0.375 V7 10.65+[0.625 V5+0.375 V8].0.35

W = [0.35 V5 +0.65 V8 ]-0.625+[0.35 V6+0.65 V91.0.375

This implies that (5.42)

0.24375 0.40625 0.0 0.13125 0.21075 0.0 0.2 0.0 0.0

0.0 0.13125 0.24375 0.0 U.21875 0.40625 0.0 0.0 0.0

H = 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 Q.0

0.0 0.0 0.0 0.40635 0.21875 0.0 0.24375 0.13125 0.0

0.0 0.0 0.0 0.0 0.21875 0.13125 0.0 0.40625 0.24375

The accuracy of the estiimiate depends on the abil iLy ot t1 ,c

interpolating function to accurately estimate the value oL

off-grid samples in a discrete image. The covariance

function itself is being interpolated in this metho(.

Caution should be exercised when using a nearust-neignbor

approach as the transforiiLation of a non-sinjuli;r

covariance matrix can be singular if the ro, s of H ara not

independent vectors.

By rotating covariance matrices, we are aole LO
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produce models which can generate textures at any angle

and magnification from one matrix. This could also be

useful when trying to identify textures of different

orientation and scale based on covariance statistics.

5.7 Second-Order Linear Model

When we say that a model is a linear or nonlinear, we

are referring to linearity or nonlinearity in the

parameters. The value of the highest power of an

independent variable in the model is called the order of

the model. For example,

Y 1 V+ 1 1 B2+ 80+ E (5.43)

is a second-order linear model. A general second-order

linear model with two independent variables may be written

as

=Y1VI+ 2V2+1VI2+22V2+812VIV2+0 + E (5.44)

A full second-order model with N independent variables

will employ (N2+3N)/2 terms in addition to the 80

(constant) and e (error) terms. This general second-order

linear model may be written as

V = V+a2V + . . .+NVN+a0 + 1 V +1 2 VIV2 + 
V N + E

N+1 1122 N0112 12 NN N

N N N

E i i I: E 6ijViVj+ £0+ . (5.45)

i=l i=1 j=i
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Second-order models have been particularly useful in

studies where surfaces must be approximated by polynomials

of low order. In all cases, a second-order model will

"fit" given data as well as or better than a first-order

model that is a subset of second-order models. This does

not imply that the second-order model will be more correct

however, as the process which we are attempting to model

may be in fact a linear first-order process or some othar

type.

The use of a second-order model to approximate the

surface of the general stochastic model could have many

advantages over a first-order model. An example ot

fitting such a model in one dimension to a given set of

data is shown in Fig. 5.13.

Still the linear first-order model may provide a good

fit to the data and the magnitude of the unexplained

variance in the data may be large enough that the

improvement due to the addition of second-order terms to

the model may be barely noticeable. In two dimensions,

the fitting problem is one utilizing a quadric surface

such as a elliptic paraboloid or hyperbolic paraboloid

versus a plane to fit a given set of data. Again, the fit
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may or may not be markedly better. Adding second-order

terms to a model will always produce a fit as good as or

better better than a first-order model but the number of

computations required to compute the coefficients and fit

the model are much greater.

It is also important to note that the covariances of

the Vi are required in order to obtain least-square

estimates of the parameters 8. in the first-order model

[20]. Covariance is essentially a second-order statistic.

Therefore, estimating the parameters of a second-order

model will require the use of fourth-order statistics.

Specifically the correlation of terms V. V. and V. V. is
1 2 3 4

needed. This may cause serious problems as many cases the

variables in a second-order model will be highly

intercorrelated. For example, the terms V, V2 and V V1 11 i

(if V i is highly related to VI ) may be strongly

correlated. This situation, often referred to as

multi-collinearity, may cause problems during the

inversion or decomposition of the estimated correlation

matrix, a necessary step in model parameter estimation.

For this reason, care should be exercised during the

analysis of second-order models.

Inside a circular radius of 14 pixels from VN+1 there

are 307 pixels. To search all possible cross products in
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this region to find the most significant would require

over 47,000 cross products to be examined. Computation of

a covariance matrix containing all of these terms is

impossible (in practice). In our study we were limited to

investigate only 820 possible cross products for entry

into the generation model. As most of the variance was

explained by the linear terms of the model, most of the

cross products were insignificant from a statistical point

of view. This selection procedure is detailed in [20] and

in Chapter 3. Those that were significant were entered

into the model and a new texture was generated using

Eq. (5.45) with stationary Gaussian noise and having zero

mean and fixed variance (56].

The results of texture simulations using the

second-order linear model are shown in Figs. 5.1(c) to

5.11 (c) . On some of these textures only a slight

improvement from the addition of second-order terms may be

seen. In most cases, no change can be observed even when

the results are displayed on a high-resolution display

device. The lack of improvement could be due to the small

number of cross-terms examined; however we feel that this

number is sufficiently large to show any considerable

improvement due to the addition of second-order terms to

the linear model.
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5.8 Textures with Non-Stationary Noise

Applying a texture generation model to the original

parent texture image data used to estimate its parameters

gives a residual error image. When applying the linear

model to a two-dimensional texture, a two-dimensional

image containing the pixel differences or residuals

VN+1-VN+ 1  is found. Here VN+ 1 is the prediction of the

next pixel in the sequence as a linear function of the

pixel around it according to the model without any noise

added. Naturally, we would expect these errors to be

small as merely subtracting one pixel from its

nearest-neighbor would yield a small value in most

natural, low-noise images. Such an image of residuals was

generated for the sand and linearly rescaled to show the

detail present in the image (Fig. 5.14). Definite

patterns are seen to exist in this image and thus a

violation of the independent assumption is indicated.

Ideally, this residual image would be uncorrelated noise.

A histogram showing the number of VN+ 1 occurring at

each pixel value is shown in Fig. 5.15. A plot indicating

the mean of the residuals V N+-VN+ 1 versus VN+ 1  is shown

in Fij. 5.16. As would be expected, residuals where the

VN+ 1 is less than 0 will have a mean less than zero and

those residuals where the VN+ 1 is greater than 255 will be
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likewise positive. Figure 5.17 shows a similar plot of

the standard deviation of the residuals versus V
N+l

These three figures seem to indicate that the distribution

of the error in the model is related to the value VN+ I .

Therefore the assumption of constant error variance is

questionable. It may be reasonable to drive the

generation process with noise which does not have

stationary mean or variance. The effect of such a change

in the generation process was studied. Figure 5.18 shows

the distribution of error VN+I-VN+ 1 (a histogram of the

residual image) which appears to be aproximately normal.

The distribution of this error and the relationships

between the predicted and actual pixel values was utilized

to generate textures using non-stationary noise. The

procedure begins by generating a pixel VN+1 according to

Eq. (5.45) excluding the error term. With this predicted

value a random error value c is chosen to be added to

VN+l. This error value E is chosen from the distribution

of error as a function of V N+ and can have any arbitrary

distribution. The next pixel will than be computed in a

similar manner. Results of texture synthesis formed using

this model are shown in Fig. 5.1(d) through Fig. 5.11(d).

The arbitrary distribution of error as a function of

is calculated by applying the calculated linear model
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Figure 5.15 Histogram of Figure 5.16 Mean of VN+-
VN+1 VN+I vs

N+ 1

Figure 5.17 Standard Figure 5.18 Histogram of
Oeviation of residual image.
V N+-VN+1 vs.

VN+1
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to the original parent texture and computing a histogram

of errors as a function of VN+ I.

In most cases, considerable improvement is seen when

these ,simulations are critically observed on a

high-resolution display device and compared with the

stationary model results. Of course, the information

required to generate them is considerably greater also.

The distribution of errors as a function of V must be
N+I

condensed and coded to some degree to minimize storage

requirements. For a 256-grey-level image VN+ 1 usually

ranges from -50 to 305 and the errors, VN+I-VN+I, from

-255 to +255. These ranges were determined

experimentally. This would yield quite a large amount of

data if fully stored. By storing a small number (under

100), typical errors for each range (and not each single

value) of V the number of data values we are required
N+l

to store can possibly be reduced to under 1000. Therefore

it is believed that this approach of using non-stationary,

non-Gaussian noise to generate textures may be quite

acceptable even with severe storage limitations.

5.9 Conclusion

The results in this chapter indicate that many

natural textures are well simulated using a large

autoregressive model. Adding second-order terms to the
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model improves the results slightly but the resulting

increase in computational complexity makes this

second-order simulation method difficult to implement.

Using non-stationary noise in the generation process

improves the simulations considerably when the textures

are viewed critically. The subsequent increase in storage

and computation required by this addition is small and

therefore this model modification should be considered in

most applications.
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CHAPTER 6

MULTIPLE MODEL TEXTURE GENERATION

6.1 Introduction

In this chapter, we will present three methods of

generating textures using multiple texture models. The

first method introduces a set of generation kernels that

is used to synthesize texture pixels in a multiple-pass

manner. Associated with each of these kernels is a unique

model. This method could be useful in generating textures

which have very coarse structure. The second method uses

a piecewise-linear method of fitting the model to parent

texture data. The model chosen during the generation

process is allowed to depend on the pixel values in the

kernel. Although the fit of the model is better, the

synthesis results show little improvement over the

single-model approach with a linear model. The third

method of texture generation presented in this chapter

uses a additional image to determine the model number to

be used during the generation process. This composite

generation method could be useful when a texture is

actually composed of a set of subtextures as it allows a
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unique model for each of these subtextures to be used in

the generation process.

6.2 Skip-Generate Method

Simulating textures which have a fine structure is

usually a much easier process than simulating textures

with coarse structure. This occurs because the linear

model contains fewer terms if the texture pixels become

uncorrelated over a small distance. For the same texture

at a greater magnification, the pixels become highly

correlated and the linear model will be forced to contain

more terms. As the texture becomes more coarse, more

time-consuming statistical measurements must be taken on

the parent texture over larger windows. Motivated by

these problems, the texture generation algorithms in this

section have been developed.

In the texture work so far, pixel V was generatedN+I

based on pixels above or to the left of it (see

Fig. 3.1(b)). As discussed in Chapter 3, the kernel does

not have to be contiguous. This kernel shape is chosen to

insure that the image space of our synthesized texture was

filled during the generation process. However, generating

pixels along a row, row by row is not the only way of

filling an image space.
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Consider the non-contiguous kernel mask in Fig. 6.1.

If the spacing between the pixels in this mask is 8, using

the linear model in Eq. (5.4) to generate the right-most

pixel in the bottom row, we can generate every 8th pixel

along every 8th row. At each step the next pixel is

generated based on the previously-generated pixels around

it (ignoring boundary conditions). After generating an

image with this type of spacing, the pixels midway between

the previously-generated pixels on each row may be

generated using the mask in Fig. 6.2. In this mask, the

pixel with the "x" in it denotes the next pixel, VN+If to

be generated according to Eq. (5.4). Naturally, the

linear model used in this step will have different

coefficients than the previous one. It is also

interesting to note that new pixels depend not only on

previously generated pixels above them (as with the mask

in Fig. 3.1(b)) but depend also on the pixels below them.

Still, ignoring boundary conditions, each pixel depends

only on previously generated pixels. At the next step a

mask similar to that in Fig. 6.3 can be used to fill in

the pixels midway between the previously-generated pixels

in each column. Again pixels are allowed to depend on

pixels around them.

By repeatedly using the masks in Fig. 6.2 and

Fig. 6.3 with successively closer and closer pixel
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spacing, the texture simulation image space is filled. An

example showing the pixels generated at each successive

pass is shown in Fig. 6.4. More importantly, to determine

the linear model for each mask, only one covariance matrix

is required and can contain as many or as few terms as

desired. The process of collecting statistics for one

matrix is not beyond the complexity tnat we would want to

undertake for the small number of times required by this

process. Naturally, any other stochastic process incay be

substituted for the linear model. As before, only the

measurements required to estimate the parameters

corresponding to each mask need to be taken. This number

depends on the spacing of the pixels in the first mask,

which should be a power of two. Other odd-shaped kernels

and kernels whose spacing is not a power of two could be

designed to form space-filling sets. Most would require

more models to be estimated and would provide little

additional information.

Texture simulations using this method are shown in

Figs. 6.5-6.12. Only a slight improve!mient is seen in some

of the texture simulations over the synthesis done by the

earlier single linear anodel. most of these textures are

apparently well simulated by a carefully chosen model and

the results are not critically dependent on the coarseness

of the textures.
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A word of caution should be added concerning the

computations involved in the linear model coefficient

calculation of this method. During the later stages of

the skip-generate method, the pixels in the generation

kernel become highly correlated as the distance between

them decreases with each pass. This may cause the

correlation or covariance matrix of the model to be

ill-conditioned. To avoid numerical problems, the number

of variables entered into the process, and therefore the

number of steps involved in the matrix decomposition

process, should be kept to a minimum in some cases. The

use of ridge regression techniques (43,44,46] might also

be considered.

6.3 Piecewise-Linear Models

When generating textures using the general linear

model described by Eq. (5.4) and the generating kernel in

Fig. 3.1(b) the same model is used regardless of the

values of the pixels V .. ,V N . By developing more than

one linear imodel and allowing the choice of the model at

each pixel generation step in the synthesis process to be

dependent on some functional value of VI,... ,VN,

F(VI...,V N) a new synthesis model is formed.

To illustrate this concept consider the data in

Fig. 6.13(a). If we were to fit one linear model to the
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data in order to predict V2 from V1 it would look like the

single line running through the data in Fig. 6.13(a).

This linear model could then be used to predict V2 based

on the value of V . But if we allow the choice of our

linear model to be dependent on the value of V1. then for

an incoming value of V1 we choose a model whose domain

includes V 1 to predict V 2 . For 1 linear models, the

straight lines are shown in Fig. 6.13(b). The fit to the

data using multiple linear models will always be as good

as or better than that of the single linear model. That

is, the mean square error will generally be reduced using

multiple models.

Using multiple linear models for texture synthesis we

would generate pixels V based on pixels V ,...V in the
N+1 1 N

following way. First, we compute a function, F, of the

V ,...,V pixels which allows us to choose the proper
1 N

linear model. Then using this model with the values

VI,...,VN we predict VN+1 and add noise. This process is

diagramed in Fig. 6.14.

Ideally, the function F should be chosen to minimize

the total mean square error resulting from fitting the

limited number of models to the sample data. This is very

difficult to do in practice however as for !,I larger than 3

we are fitting multiple hyperplanes to data in an N+l

150



dimensional space.

One texture synthesis of sand was done using the

multiple linear model (see Fig. 6.17). In this case eight

models were used and the model number was chosen by

examining the pixel immediately to the left of the pixel

being generated. The range of this pixel, 0 to 255, was

divided into 8 equal subranges and the model was chosen

according to the subrange into which the value fell. Only

a slight improvement over the single linear model

synthesis (see Chapter 5) is seen even though the same

kernel shape was used. No other simulations have been run

using this model as it is felt that little improvement

will result. Also the linear model containing

cross-product terms in Chapter 5 probably provides a very

good fit in most cases and in more dimensions. In one

dimension the model of Chapter 5 would fit the data in

Fig. 6.13 with a quadratic curve.

6.4 Field-Definition Stochastic Model

Another method of using multiple stochastic models is

to generate an image of fields defining the model number

to be used in a second pass. Such an approach would be

useful in simulating textures which have multiple

sub-textures within them. A simple analytical example is

shown in Fig. 6.15. Real world examples might include
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such things as a brick wall where the texture of the

bricks is different than the texture of the concrete

separating them. It was felt that this type of approach

might be useful in the simulation of bark (see

Fig. 3.6(a)) which has a strong macro structure. A method

to separate this texture into two fields, which would

later define the model to be used, was designed. This

result (Fig. 6.18) was obtained by successively passing

smart median filters of varying sizes over a binary image

(which was obtained by thresholding an original continuous

grey-level image) (see Fig. 5.2(a)).

The smart median filters replace the center pixel of

a window with the median only if certain conditions are

net. The window is passed over the entire image pixel by

p ixel along a row, row by row in a two-dimensional

convolution manner as in Fig. 6.15. Let I (n ,n 2) be the
I11

input image and I (n ,n ) be the output. Let the pixel0

values be 0 (black) and 1 (white). Let NB  denote the

number of black pixels in the window being processed with

center II(nl,n 2 ) and let NW be the number of white pixels

in the window. For the binary case,'the smart median

filter is defined as
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Figure 6.15 Analytic Figure 6.16 Two-dimensional
Sub-textures Convolution
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NB

S0, if N B+N W  > Thresh

N B +N )
0('n'2"= , if W > Thresh

II (nln 2) , otherwise

Equation (6.1) indicates that the center pixel of the

window is replaced by the median if the percentage of

black or white pixels is above a specified threshold. The

term "replaced" is used loosely in this context to

indicate the visual appearance of replacement when the

input and output images are superimposed. In the binary

case, the median of the pixels in a window is equal to the

value of the most frequently occurring pixel in the

window. The threshold and window size varied in the

successive passes over the image. The window sizes and

thresholds for each of the passes used to obtain Fig. 6. 18

were -0. 50, 3-0.50, 5-0.50, 7-0.75, 11-0.78, 7-0.50.

This multiple-pass procedure helped to retain detail and

eliminate fields too small for useful measurements.

The field-definition stochastic model was also

applied to the non-stationary cloth texture (see

Fig. 5.14 (a)) This texture is clearly composed of two

alternating subte/tures. In this case, the texture fields

can be extracted by hand (see Fiy. 6.21).
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Once the two-field images for bark and cloth were

obtained they were processed again to define a total of

four fields, the two original fields and two border or

transition fields. The transition fields are required as

the kernel of points over which relational measurements

(usually second-order statistics) are taken may not fall

wholly within one of the two fields. Such border

measurements will surely increase the inaccuracy of the

models for the original fields. So these border regions

are considered to be unique texture fields. They are

mathematically defined by passing the original linear

model texture generation kernel obtained in Chapter 5 over

the texture and defining the relative importance of each

pixel to be equal to the absolute value of its associated

B. coefficient of the linear model (Eq. (5.4)). These
1

coefficients are usually largest near the eye of the

kernel. The "importance" of the eye itself was set to

1.5 max(Oi). If a large percentage (90% for bark, 95% for

cloth) of the total "importance" fell within one of the

two original fields, the point would be considered as a

member of that field. If not, the point would become a

member of the transition field based on its position with

respect to the two fields, A and B. If, at the point

being processed, A is to the left of B then the point is

in one transition field, if B is to the left of A then the
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point is in the other transitional field. The right-left

orientation is used as the texture generation process is

usually done in a left-to-right imanner along each image

row.

The results from processing the original field data

for the textures bark and cloth are shown in Fig. 6.19 and

Fig. 6.22. The four fields are represented using four

grey-levels. The black regions on the border may be

considered to be undefined as the kernel points do not lie

with the image region in these areas.

These field definitions were used both in the

statistics -gathering process as well as the texture

synthesis process using the four calculated models. The

models were linear (see Eq. (5.4)) and the methods used in

their estimation were discussed earlier in Chapter 5. The

synthesis results are shown in Fig. 6.20 and Fig. 6.23.

Unfortunately, the field structure is not strongly

apparent. The primary reason is that each model requires

a number of pixel generations before it reaches a steady

state and in most cases this is much greater than the size

of most of the fields in the bark texture. By observing

the border regions of many synthesis runs, it seems that a

steady state is reached after 10-20 pixels have been

previously generated. In the cloth texture synthesis of
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Fig. 6.23, the randomness of the noise seems to destroy

the structure of the texture quite frequently. This is

illustrated in Fig. 6.24 where only one of the four models

was used to generate the entire texture. Each of the

models contained the same set of kernel points used in the

original linear model of Chapter 5. It is possible that

improvement could be made by choosing a different set of

points for each field-model.

In an actual simulation, once a field image is

obtained a method must be developed to simulate this field

texture and this field texture will then in turn be used

to choose the model numbers in the generation of final

synthesis. Generating textures with only a few grey

levels can be done using more complete stochastic

statistics, perhaps N-grams, but the large size of the

fields may require that a method such as the skip-generate

method (discussed in section 6.2) be used. For many

textures, such as cloth, the field generation process

would be simple.

More work should be done in the multiple model area

as the storage requirements for such models is very small

but can potentially produce improved results. A great

number of combinations and approaches are possible in this

area and, in many cases, may be chosen by the application

or the particular textures being simulated.
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tion Image for
Cloth Simulation

X~ A?.0

1A .-. l

KX .
5N I z- 'j 4', IN

WR(.4~*~-v V ~ 4~r

Figure 6.23 Field-definition Figure 6.24 Single-field
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CHAPTER 7

BEST-FIT TEXTURE MODLL

7.1 Introduction

A method of generating texture siciulations according

to their Nth order densities was investigated for binary

textures in Chapter 3. The simulations resulting from

this Markov process resembled their parental textures

quite closely in most cases. When applying a similar

concept to multi-grey level imagery, the limits of

computer storage are soon reached. To circumvent this

constraint, a new method of texture synthesis was

developed and applied to a number of textures. Simulation

results using this method are given in this chapter.

7.2 N-grams in Continuous Imagery

In binary texture generation based on N-grams a

single functional value P(V N+/VI, ... V N ) was stored for

each possible pattern (V1V 2.' .VN) where the Vi's can be

zero or one. This value, also called a generation

parameter, represented the conditional probability that

the next pixel, V N+, in the generation process woul.A be a
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zero-valued, black pixel. The V 's were chosen by a best1

linear model fit detailed in Chapter 3 and therefore the

kernel of previous pixels (VI,...,VN) is not necessarily

contiguous (see Figure 7.1) . Details concerning the

estimation of P(VN+/'Vl,...,VN) from a parent texture are

given in Chapter 3. For binary textures, this single

value is sufficient to define the distribution of VN+ 1

given V1 ,.. ,V . The number of different functions which
N

must be stored is 2 In the generation process each

pixel VN+ 1 is generated based on the values of the pixels

V1 ,... ,V N  surrounding it and on a computer-generated

uniformly-distributed random variable. The texture

simulations are generated pixel by pixel along a row until

each row is complete. Pixel generation along the edges of

an image can be handled in a variety of ways but i,

Chapter 3 pixels in these border regions were assuifled tz

be any random value, 0 or 1, if they were outside the

image boundaries.

A similar approach could be used to generate

multi-grey-level textures. For a texture containing g
N+I1

grey levels, g different functions, P(V N+/VI,...,VN),

must be stored. (Actually only (g-l) gN are re4uired as

g-1

P(X/V ,...V N)=l for all V.). Storage limitations

are soon reached. Also estimation of P(V N+/V l,...,V N) is

difficult as multiple occurrences of the pixel pattern

161



V ,...,V may not exist in the parent texture. ThLrefore
1 N

even without storage limitations the problems of

estimating P(V N+/V ,...,V N ) from a given parent texture,

which represents the distribution of V given the values
N+I

of V ,... ,V is complex.
1 N

This estimation problem no doubt has a number of ad

hoc solutions. The problem is basically that for large N

and/or large g, there may not be a suitable number of

occurrences of the pattern Vl,... ,VN to adequately

estimate the distribution P(V /V ,...,V ) given a finiteN+I 1 N

sample size. Even though a certain pattern never occurs

or rarely occurs in our sample parent texture it is not

implied that such a pattern is impossible and will never

occur in our simulation synthesis. We might often find

numerous occurrences of this pattern if our sample size or

the size of our parent texture was increased, especially

in noisy and fine-structured textures. But as this very

large sample may not be present, we must estimate

P(V /V ,...,V ) for all V ,...,V based on availableN+I 1 N 1 N

samples.

One approach would be to use sample patterns which

closely resemble but which may not be exactly the same as

each pattern (V ,...,V N). That is in a pictorial sense,

we use patterns of (Vl,...,VN) which look "close to" the
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pattern for which we are attempting to estimate

P(V N+/V ,...,V N). Therefore samples in our sample parent

texture may be used to estimate numerous P(V /VI V
N+1 1"' &

and not just those they fit exactly. The concept of a

distance function must be used to numerically define

"close to". Given two patterns, one from our sample

texture and the other from the conditional probability of

the kernel we are attempting to estimate, the distance

measure can be used to determine the value of that sample

in estimating P(V N+/V '''''VN ). If the fit between the

kernel pattern and the pattern in the sample texture is

good the associated value of VN+ 1 in the parent texture

will be valuable in estimating P(V N+/V ,...,V .

Normally, when N and g are small or when we have many

samples for any given V V,...,V we can use the histogram

of the associated VN+1 to estiniate P(VN+1/VI,... ,VN).

Here the relative number of times a particular value of

VN+ 1 occurs given a pattern indicates the conditional

probability we are attempting to estimate. This was

discussed in section 3.2. Wnere a distance measure is

used instead, a good fit could be considered to be

synonymous with high frequency of occurrence of that

pattern and a poor fit with low frequency of occurrence.

If such a method of estimating these conditional
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probabilities is used we are still faced with a huge

storage problem. For this method to be practical, the

storage requirement n.ast be reduced. From an information

standpoint, it is interesting to note that a method of

estimating N-grams or conditional probabilities

P(VN+I/Vl, ...,VN) from a sample parent texture image

produces gN+l data values from M pixel samples wnere M is

the size of the square parent texture image in pixels.

For large g and N this is a drastic increase in data. But

the actual information content can really never be greater

than that content of the sample parent texture image.

Therefore, this M value represents an upper bound on the

amount of data we should use to generate a texture

simulation. Any amount of data exceeding this will

contain redundant data.

7.3 The Synthesis Method

Combining this concept of upper bound with the idea

of forming a distance measure to compare two texture

kernel patterns leads to a new texture synthesis method.

In this method, we generate the next pixel based on the

pixels in the kernel surrounding it (see Figure 7.1) and

their comparison to similar kernels in the parent texture.

This comparison is made by passing the kernel currently

present in the simulation process over the parent texture
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and computing the distance function at all possible points

(see Figure 7.2). Denoting the pixels in the parent

texture by X ., i,j=0,...,M-1 and the pixels in the
1,)

kernel VIl,...,VN by Yij' we can compute a comparison

image

Ca,b = COMPARISON(Xi+aj+bYij )  (7.1)

for all a,b such that the kernel is within the boundaries

of the texture.

One possible comparison function would be

correlation. Assuming, without loss of generality, that

our kernel is contiguous as in Figure 7.3 and the elements

are denoted as Y this function would be defined as

i (Y_- ' Xa+i' b+J i'J

ra,b Z Xa+i b+j (i"j J
X 2i Xa+i b+j(72a a+i,b+- N

y2 -- +2

E i'j N

The problem with this particular distance measure is quite

serious. Correlation does not take into account

differences in over-all mean. For example, the kernels in

Figure 7.3 are perfectly correlated but their means differ
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significantly. Differences in first-order statistics

between these kernel patterns will not be detected by a

correlation measure and so another comparison function to

supplement a correlation value would be required.

A better comparison function would be the mean square

difference (MSD). This is defined as

MSDb .+Y )2Ma,b = E(Xi+a,j+b- Y i , j ) 2 .3

iij

where i,j must be within the coordinate range of the

kernel as in Eq. (7.1). This comparison function will

detect differences in first-order statistics between two

pixel patterns (such as those in Figure 7.3) as the MSD

function is a sum of squares of differences. Whereas the

correlation coefficient of Eq. (7.2) varies between -1.0

and 1.0 and is largest when the fit is good, trle MSD

measure is small when the fit is good and it is always

positive.

The MSD function weights the comparison of all

elements in a kernel equally. Having studied many texture

generation models we immediately recognize that this fit

is not properly weighted. The few pixels which are

closest to YNEXT in proximity are far more important when

predicting "NEXT than those which are far away. So
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Eq. (7.2) must be modified to give the weighted

mean-square difference (WMSD)

WMSDa,b =E .(Xi+a,j+b-Yi') W. (7.4)
i j

A possible choice for W is

W.1 (7.5)
1,j 2+ 2 - 2

(i- i+(j- ) 2 R 2

where R is the euclidean distance between pixel Y andI,3

the kernel eye YNEXT and the coordinates of the eye are

given by (iNEXTJNExT).

As the first step in comparing a given kernel Y. to

all kernels in the parent texture, for each point (a,b) in

the parent texture, ignoring edges, the WMSD is computed

resulting in an image of WMSD's. Where the fit between

the generated kernel Yi,3 and the image Xi, j is good, we

would expect WMSDa,b to be small. The smallest KrASD

represents the "best" fit according to our norin. We could

choose the YNEXT associated with this best fit at point

(a,b) to be our next pixel in the generation process,

however this can cause problems. First of all, the

generation process would "lock in" on the parent texture

and the generated texture could very well become just an

exact copy of the input parent texture. Second, we know
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ideally that Y has a distribution, not just a mean.
NEXT

In the autoregressive model of Chapter 5 we gave YNEXT a

distribution by adding random noise to it. Although this

could be done here, such an approach would fail to use

additional information contained in the WMSD image. There

may be a set of points (a,b), all exhibiting a good fit to

the kernel pattern Y.. In fact, the best fit may have a

noisy Y and the other good fits could provide
NEXT

information to improve the prediction of the YNEXT in the

generation process. Using a set of best fits is

equivalent to increasing our sample size. We look at a

set of similar patterns to pick our Y
NEXT

At this point there are numerous ways to proceed.

Logically those patterns with the "best" fit should

provide better estimators for YNEXT so some kind of

weighting decision is needed to choose the relative

importance of the WMSD's found. If we search through the

WMSD image and find the minimum value, WMSD and scale

all the WMSD's by that we form a new image MAX1

WMSD
MAX = m (7.6)a,b WMSDb

This image has the value 1.0 at the best fit point and

values 0 < MAX1 < 1.0 elsewhere.
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Here we can look at the MAX1(a,b) image and study its

range. If 0.16 < MAX1 < 1.0 it is implied that the worst

fit yields a 0.16 value. Somehow that worst fit should be

translated to imply that the probability of choosing the

YNEXT associated with that point (a,b)WORST is nearly 0.0.

The simplest way of doing that is to take powers of the

image MAX(a,b). The maximum remains 1.0 while smaller

numbers approach 0.0. For example (1.0)10=1.0 but

10 8
(0.16) =lxl0 We do this to obtain an ad hoc estimate

of P(YNEXT/Y i,j). After experimentally studying the

values of MAX1(a,b) and its powers, the value of 16 was

chosen and a new image PDFUNS

16
PDFUNSa,b = (MAX a,b) (7.7)

was used to estimate the probability density function

P(YNEXT/Y i,j). The values in the PDFUNS image are

generally very small with less than 1% of the image points

having value greater than 0.1. As a rule of thumb, it can

be argued that 1% to 0.05% of the 128x128 PDFUNS values

should be greater than 0.1. A larger percentage would

increase undesired randomness and noise in the synthesized

image and a smaller number could cause "lock in" on the

parent texture. The value 16 was also chosen for

convenience and computational efficiency as it can be

computed with only 4 multiplications and minimal data
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storage. More study could be made concerningj the effect

of the value of this variable on the simulation results

and other approaches to creating a PDFUiS image from the

MAX1 values could be tried. Studying a histogram of MAX1

values might also be very informative.

PDFUNS is then scaled so that EE PDFUNS(ab)=l.
a b

In this way a pseudo-density function is formed. Finally

a uniformly distributed random variable, r, [0,1] is

generated and a point (c,d) is found such that

c-1 d-1

EE PDFUNSa,b+ E PDFUNS c,b < r

a=1 b b=1

d (7.8)

EE PDFUNSab+ ZPDFUNScb > r

a=1 b b=1

The YNEXT associated with the kernel shape at (c,d) is

then used as the next pixel in the generated image. The

process is continued until a full texture image is

generated -with the kernel window moving one pixel at each

step, row by row.

In an indirect way, this is equivalent to generating

a random variable having any distribution using the

desired cumulative distribution combined with a uniformly

distributed random variable (which is easy to generate).

In other words, uniformly-distributed deviates are
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transformed to deviates having the desired distribution

using the inverse cumulative density function [45,48,58].

This is frequently done in simulations.

7.4 Results

For a kernel containing 55 pixels (see Figure 7.4)

passed over a 128x128 parent texture approximately

7.2x106 operations (additions or subtractions) are needed

to get the WMSD image defined by Eq. (7.4). Another

52.6x0 5 are required to find the next pixel according to

Eq. (7.8). therefore, to generate a 512x512 texture
12

requires 1.96xi0 (2 trillion) operations.

Results from texture synthesis done by this method

are shown in Figure 7.5 through 7.15. The original

textures are shown in Figs. 5.1(a) through 5.11(a). Each

of these images is 512x512 pixels. A 128x128 section of

each original (parent) texture was used for the

simulation. Bark exhibits very large macro structure and

this is lost in the simulation. A similar thing happens

with raffia as the kernel size is smaller than the cell

size of the original texture but is not as pronounced.

The top part of the bubbles texture was generated using a

128x128 portion different than that of the bottom part.

For this reason the top 20-30% of the texture looks

different from the rest. The large number of operations
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Figure 7.5 Best-fit Grass Figure 7.6 Best-fit Bark

Z~

Figure 7.7 Best-fit Straw Figure 7.8 Best-fit Cloth
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makes this process very time consuming even when a

pipelined processor is dedicated to the task. About 5.5

days of dedicated time on an APl20B were required to

generate each texture.

Although this method is of little practical use due

to the computational complexity of the algorithm a few

points should be made. With constantly increasing

computer processing speeds, a simplified version of this

texture simulation method may be implemented in the near

future. It is even possible that such computations could

be performed by an array of microprocessors. In any case

such brute-force approaches are simple and could be made

cost-effective in the future.

The results also indicate visually the amount of

texture information present in a 55 pixel window (see

Figure 7.4) because at each pixel generation step, the

next pixel in the Markov process depends on only the

pixels in this neighborhood.

Finally, this approach is admittedly ad hoc.

Numerous distance measures could replace the one chosen in

this work and each would give different results that might

appear better or worse. It is always important that the

process be random and not merely copy the texture sample.

If the simulation region is much larger than the parent
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sample, a deterministic process will quickly generate

patterns that can easily be seen to repeat. In other

words, the histogram represented by P(V N+/V i,... ,VN)

should rarely be a delta function. A reduction in the

number of computations could be made if the kernel was

non-contiguous. Also, better results could probably also

be obtained if the kernel window was larger. The shape,

contiguity and size of the kernel in this study was chosen

primarily for computer programming considerations.

7.5 Conclusions

The results from this best-fit texture synthesis

method are very pleasing but the number of computations

required is large. Other similar algorithms could be

developed which are simpler and could possibly produce

even better results. With the decrease in computation

costs and the increase in processor speeds of future

computers, such texture synthesis methods could be

implemented in the future without great cost.
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CHAPTER 8

NON-HOMOGENEOUS TEXTURES

8.1 .Introduction

In this chapter, methods for removing and introducing

non-homogeneities in texture images are presented.

Non-homogeneities in neighborhood iean and standard

deviation are often removed previous to statistics

collection over a parent texture image to improve the

accuracy of parameter estimation. Similar

non-homogeneities may be added during the texture

synthesis process by merely reversing the process. In

this way, synthesized textures which are homogeneous may

be processed to be non-honiogeneous.

8.2 Removing Non-Homogeneities

Prior to simulation attempts, the textures in this

study have been preprocessed by statistical differencing

[42]. This preprocessing step is described by

I(nl,n 2 ) = [F(nl,n2)-F(nlfn 2 )][ Aad 1+
A&(nlin 2)+°d (8.1)

[ammd+ (l-) F (nl,n 2 ) ]
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where md and ad represent desired mean and standard

deviation. F is the input pixel at location (nln 2) , row

n and column n2 in the discrete digital image matrix, and

I is the output pixel in the statistical differenced

image. F(n,n 2 ) and a(n 1 ,n2 ) represent the mean and

standard deviation of the input image at the point

(nl,n 2 ). The variable A is a gain factor that prevents

overly large output values when a is small, and a is a

proportionality constant controlling the extent to which

the mean of the output image is homogeneous.

In our studies, mean and standard deviation factors

were computed in non-overlapping lGxlG pixel blocks values

are used to compute the mean and standard deviation at

each point. In our work a = 0.8, md = 128, ad= 85 and

A = 6. These values tend to induce local homogeneity in

mean and standard deviation over an image. Large amounts

of variation, however, will only be reduced and not

eliminated unless A is very large and a = 1.0.

Assuming that a does not approach zero, then another

form of statistical differencing can be used. This may be

written in equation form as
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I (n1 n2 ) = [F(nl,n 2 )-F(nl,n 2 )] + (1-6
(8.2)

+ [amd+ (l-a)F(nl,n 2 ) ]

Here, both a and 6 are proportionality constants ranging

from 0.0 to 1.0. Setting a = 1.0 and 6 = 1.0 returns an

output image with precise desired mean and standard

deviation. Setting e 0.0 and 6 = 1.0 causes the

standard deviation but not the mean of the input image to

change. Setting a = 1.0 and 6 =0.0 causes the mean but

not the standard deviation of the input image to be

modified. Setting a = 0.0 and 6 = 0.0 produces no change.

Examples of statistical differencing are shown in

Figs. 8.1 through 8.4. The cork texture of Fig. 8.1 is

non-stationary in mean due to shading differences,

primarily at the right edge. Figure 8.2 shows the image

resulting from processing Fig. 8.1 using the statistical

differencing algorithm. The non-homogeneity of mean is

removed and the contrast is slightly increased. An

original brick texture image shown in Fig. 8.3 has very

low contrast. After statistical differencing, local

contrast is much improved and the texture is more apparent

(see Fig. 8.4). Thus the statistical differencing

algorithm is quite useful in eliminating

non-homogeneities.
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8.3 Introducing Non-Homogeneities

The inverse operation of statistical differencing can

be called local moment modification. Solving for F in

terms of I using Eq. (8.1) we find the formula for local

moment modification as

AO (nl~2) +o d F (nln2)Aod

F(nl,n 2 ) A=(nln2+ad I(nl,n_2_)+2
AOd Ao (ni'n 2)+Jd (8.3)

- [fcmd+ (l-)F(nl,n 2 ) ]

Using Eq. (8.3) we can introduce non-homogeneities into a

simulated texture by generating an image F(nl,n 2 ) and

o(nl,n 2 ) and defining A, a, md, and

Again, if we assume that 5(nl,n 2 ) does not approach

zero, then Eq. (8.2) can be inverted to form another local

modification formula

F(nl,n 2) = F(nln 2 +

(8.4)

u(nlfn2 ) [I(nlon 2 )-amd-(l-t)F(nl,n 2 )]

o(nl,n 2 ) (1-6 )+6 ad

In the process of local moment modification, it is best to

set md and ad to be equal to the mean and standard

deviation of the homogeneous texture I(nl,n 2 ). Then, the

mean and standard deviation of the output image (F(nl,n 2 )
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will be defined by the images F(nln 2 ) and o(nln 2 ).

These images may be generated randomly.

An image, before and after local moment modification,

is shown in Fig. 8.5. Here F(nl,n 2 ) was assumed to be

ramp-like and a(nl,n 2 ) was constant. Many other complex

and random F(nl,n 2 ) and G(nl,n 2 ) images could be used to

create different effects and simulate phenomenon such as

non-homogeneous lighting effects.
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CHAPT E R 9

TEXTURE IDENTIFICATION AND SEGMENTATION

9.1 Introduction

In this chapter we examine various approaches to

texture segmentation and identification using the linear

model developed earlier. These methods employ covariance

measures of a texture over windows of the region being

segmented or identified. These same covariance measures

were used to estimate the linear model parameters which

were examined in Chapter 3 and Chapter 5. In Chapter 5,

the information content of these measures was shown by

performing simulations of various textures and therefore,

based on these results, we might conclude that these

second-order statistics would be useful in the

segmentation and identification of textures. Pictorial

segmentation results are given in this chapter.

It is generally agreed that a great portion of

texture information is contained in the second-order

statistics of a texture. There are notable exceptions to

this rule as was shown in Chapter 2, however for most

natural textures, second-order statistics have proved to
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be sufficient to adequately discriminate textures in most

applications (49,51]. In a practical sense, we usually

are also prevented from gathering and analyzing

higher-order statistics because of computational

limitations. In fact, we can easily be overwhelmed by

masses of data arising from second-order statistics.

The most general second-order statistics are the

complete second-order joint densities, or 2-grams, which

were discussed in Chapter 2 for the one-dimensional

texture synthesis case. These measures may be estimated

by joint gray scale histograms taken over a parent

texture. For a g grey-level image, each histogram

requires g2 storage locations. But, as was pointed out in

Chapter 2, there is one such histogram for each vector

distance or spacing between a pair of pixels. To compute

these histograms over all spacings, 2 ,...,nr, in two
2 2

dimensions would result in (nr-i) g entries. Even for

reasonable g and n r' this could easily create a data

expansion containing unnecessary information rather than a

data reduction yielding measurements with discrimination

value.

For these reasons, texture image data is often

quantized (to reduce g) and second-order measurements

resulting in joint grey-scale histograms are made over a

186



smnl 1 number of pixel spacirigs (to reduce n r )  TO

decrease the size of the feature space further, various

functions of joint grey-scale histograms are calculated

and these values are primarily used to identify a texture.

For a single histogram, as many as 25 to 30 functions have

been proposed [7]. In spite of the large dimensionality

of the feature space and the problems with quantizing low

contrast textures, this family of texture features is used

frequently to successfully classify textures (7,52].

Many other identification and classification schemes

exist [49] as the discrimination of textures represents

the most important application of texture analysis.

In this chapter, we reduce the information contained

in the joint grey-scale histogram to one single number,

the correlation coefficient for that particular pixel

spacing. It is expected that this large reduction will

cause a decrease in discrimination power as the size and

information content of the feature space has been

significantly reduced. The purpose of this exercise is

not to develop a new, more powerful texture identifier but

merely to access the information content of the

correlation coefficient values when applied to the problem

of texture discrimination. It is already apparent from

the simulation results presented in earlier chapters that
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a greaL deal of texture information may be obtained by

proper use of these correlation coefficients.

Correlation measurements have been applied in various

ways to the problem of texture identification previous to

this study [2,11,12,14,49,53]. It has generally been

concluded that they are of lesser value than Haralick's

family of functions on values of the joint grey-scale

histogram [51] when applied to the discrimination problem.

In the remaining sections of this chapter we will develop

two new discrimination methods utilizing correlation

values. One is based on the statistical test for equality

of covariance matrices. The other utilizes multiple

statistical tests for the equality of individual

correlation coefficients. Both show good discrimination

power but neither exceeds the quality of Haralick's

measures.

9.2 Segmentation Using Correlation Matrices

Texture is a feature which can only be measured and

identified over an area of an image. Therefore nost

segmentations of an image according to texture information

will require that measurements be taken over an area and

then part or all of that area will be classified

accordingly. In our work, measurements were taken over a

square, WBIG pixels in length, and a center square, WSM!L
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pixels in length, was classified from these measurements

as in Fig. 9.1.

Second-order statistics must be measured over a

variety of vector distances (pixel-pair spacings) to be

useful in texture discrimination. In our case, these

second-order statistics are correlation values. There is

only one correlation value for a particular spacing.

There are many approaches to estimating a correlation

value over a window for a particular pixel-pair spacing.

One involves passing a kernel of pixels over the window

and taking a sample at all points where the kernel is

completely contained within the window boundaries. Such

measurements would result in a covariance matrix for the

kernel over that window. This matrix can be used to

identify a texture, as will be shown later in this

section. Another approach to estimating a correlation

value for a particular pixel-pair spacing would involve

measurements over all possible samples within the window

of that spacing. This is equivalent to passing a kernel

containing two points over the window for each pixel-pair

spacing. The result of this approach is a correlation

value for each spacing which must be examined by itself

and may not be used to form a correlation matrix as was

discussed in section 3.7. A method for identifying
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texture using these individual correlation values will be

examined in section 9.3.

Once we have obtained a covariance matrix by passing

a kernel of points over a window, that matrix may be

compared statistically with covariance matrices from known

textures. Such a statistical test has been derived for

testing the equality of covariance matrices. The maximum

likelihood ratio approach used to derive this test makes

the standard assumptions of multi-dimensional normality

and independence of samples. Both were used in our

texture simulation work. Details concerning the test and

its derivation are given in [47,54]. The statistical test

for two covariance matrices is given by

U 2.3026 dD 2 (9.1)1 N(N+1)/2

where

D = (M1+M 2-2)logl0 ICI-(MI-1)iog1 0IC 1I -(M 2 -1)log1 0 I C2 1•

C 1 and C2 are the estimated covariance matrices for each

group,

C = [(MI-1)C 1 +(M2 -1)C 21/(MI+M2 -2)

and

d 1 (~ 1 1 [(2N 2_3N-1) /6 (N+1 )1
(MI-1) (M2-1) (M1+M 2 -2) J2N

L is the size of the covariance matrices beinj tested
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which is equal to the number of pixels in the kernel. M
1

and M2 are the sample sizes used to estimate C1  and C2 .

ICI denotes the determinant of C. The test statistic, UI,

has an approximate chi-square distribution with N(N+l)/2

degrees of freedom and approaches 0 as C1 approaches C2.

Having derived the test for equality of two

covariance matrices we must determine the contents of

these matrices. As the number of points in the kernel

inicreases, the size of the covariance matrices increases

leading to more difficult and time-consuming determinant

calculation required in Eq. (9.1). Also, as the spacing

of these pixels increases, the number of samples in a

window decreases. Finally, as more and more points are

included in the kernel, the amount of redundant and

overlapping information in the covariance matrix increases

due to redundant pixel-pair spacing. This was discussed

in section 3.7.

To eliminate this redundancy, we will consider the

problem briefly in one-dimension. Perfect, non-redundant

pixel spacing is possible only for patterns with maximum

range of 1, 3 or 6 pixels given by the corresponding

patterns XX, XX-X and XX--X-X as shown in Table 9.1. For

these three particular ranges, the patterns shown are

constructed so that no two pairs of X's are separated by
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the same distance. One and only one pair of X's may be

found in these patterns which is separated by each

distance less than or equal to the maximum range. For all

other ranges, redundancies will exist in any pattern

spanning the range. That is, more than one pair of X's

may be found which are separated by the same distance in

patterns not having a maximum range of 1, 3 or 6. A

pattern spans a range if and only if at least two X's may

be found in the pattern which are separated by every

distance less than or equal to the maximum range. These

patterns are sometimes referred to as difference sets

[59,61,73].

A set containing a minimal number of X's can be found

to span all ranges. A list containing the minimum number

of X's required to span each range and one non-unique

pattern which spans the range is given in Table 9.1. (To

determine that the distance 52 could not be spanned with

12 points required over 132 billion subtractions plus a

very large number of logical operations.)

Extending these one-dimensional spacings to two

dimensions merely requires the vector product of the

transpose of any of the row vector patterns with itself

yielding a two dimensional matrix. Unfortunately, the

corresponding two-dimensional matrix pattern will always
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contain redundancies if all possible distances and

orientations less than or equal to the maximum range are

to be spanned. Patterns obtained using this vector

product approach are heavily weighted in the horozontal

and vertical directions.

A two-dimensional kernel containing 16 pixels which

spans a two-dimensional range of 6 is shown in Fig. 9.2.

Passing this kernel over a window yields a covariance

matrix of dimension 16, which is not an unreasonable size

for computation purposes. The number of data samples over

a window of size WBI G is (W BI G- 6)2. Even for small

windows of size 16, a reasonable sample size of 100 may be

obtained.

Once the kernel and procedure are determined, we

proceed with the process of segmenting the textures to

test the identification procedure. There are many

approaches to this problem which are usually defined by

the particular case of interest. We may or may not have

prototype and parent texture data. We can segment,

cluster-analyze or identify. Notice that the generality

of the test leaves a wide variety of options open. We can

compare matrices in one area of an image with those in

other areas and our test statistic values will be the

distance measures defining the closeness of the textured
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Table 9.1 MINIMAL SPANNING SETS

RANGE *PTS
2 2 XX
3 3 XXX
4 3 XX-X
5 4 XXX-X
6 4 XXX--X
7 4 XX--X-X
8 5 XXXX --- X
9 5 XXX--X--X

10 5 XXX---X--X
11 6 XXXX--X --- x
12 6 KKK --- Kx---Kx
13 6 XXXX----X --- X
14 6 XXX --- X--- X--x
15 7 XXXXX----X ---- X
16 7 XXXXX -- x--
17 7 XXXX----X --- X--- X
18 7 XXXX----X----X --- X
19 8 xxx XX -X- --- K---
20 8 XXXXX---X----X ---- X
21 8 XXXXX -- --- x--x
22 8 XXXXX-- ------ x--
23 8 XXXX ---- X---- X---- X--- X
24 8 xxx -------- X---X9--X--X-X
25 9 XXXXXX -- ---- -K---
26 9 XXXXXX -- --- --- K---
27 9 XXXXX -- ---- K- x---x--
28 9 XXXXX---- ------ x--
29 9 XXX ---------- X---- X--X--X--XX
30 9 xx ----------- X---KX--X--X--K-X
31 10 XXXXXX -- K------ - K --
32 10 XXXx -- x-K- - - K---
33 10 KXXXXX -- x--K- ---- K---
34 10 XXXX ------K-K-- --------
35 10 XXX ----------- x-- - - -X-
36 10 xxx -------------- X--- X--K--X--K--X-K
37 10 XX-X- --- x K - K- --- K------Kx--- XK
38 11 XXKXXKx-------Kx-------Kx-------Kx--K
39 11 XKXXK --- -- -K---- --- K---
40 11 KXKx --- -- --- K----- -K---
41 11 XXKXx- K-x---x---K - K --- X- x---x--
42 11 XKKx----------Kx----Kx---x-- -X-XX
43 11 KKKK --------------- x-- -X-X-X--X
44 11 X-X-- --- x--- --- x-------K - K---X---KKx
45 12 XXXXXKX -------Kx-------Kx- K--x-------Kx- K-
46 12 XXXXXXK -------Kx-------Kx-------Kx-------Kx- K-
47 12 XXXXXX --- -- --- K-- x----- --- K---
48 12 XKXXXx----------Kx-------x---K -- --- K---
49 12 XXXX ---------K -------------X--X- -----K----X --- XX
so 12 XXXX -------------------- --- --X - --x---X
51 12 XXXX ------------------- x-- - - - --- X-
52 13 XKXXXXKKx--------Kx--------Kx--------Kx--------KX-------KX
53 13 XXXXXX -------Kx---K--------Kx- K--x-------Kx- K-
54 13 KXXXKx------- x-------Kx-------Kx-------Kx-------Kx--K
55 13 XKXXXKxx-------Kx--------Kx--------Kx- K--x-------Kx--K
56 13 XKXX - K---x-------Kx-------Kx-------Kx--- -- -K---
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regio We could compare a matrix with a number of known

prototypes and classify the unknown region according to

the test statistic for each comparison. Finally, we may

merely wish to locate a particular texture in an image and

thus we would compare matrices with only one prototype.

This later approach was selected in this chapter as

the visual results are simple to display and analyze. We

will compare the matrix measured over a large window with

one obtained over the complete parent texture prototype

and assign the pixels in the small window accordingly (see

Fig. 9.1). Figure 9. 3 shows the test composite image

used. We will attempt to identify the texture sand in

that region. The texture sand was chosen as the

simulation results of this texture were in some ways very

poor when examined critically on a high resolution device.

Therefore, it represents a worst-case example.

Figure 9.4 shows the segmentat ion results when

WBI G = WSMAL L = 16. The pixel brightness are linearly

mapped test statistic values, which are supposed to be

chi-square-distributed. Improvement is made when

W = 32 and W = 16 as is seen in Fig. 9.5.BIG SMALL

Figure 9.6 shows much improved results when W = 48 andBIG

WSMAL L = 16. The difference is due to the availability of

more texture information in the larger window in the form
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Figure 9.3 Input Composite Figure 9.4 Segmentation Using
Image Covariance matrix,

wBIG 1

Figure 9.5 Segmentation Using Figure 9.6 Segmentation Using
Covariance Matrix, Covariance matrix,

BI 32 WBG= 48
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of increased sample size (100 to 1764).

As a final note, it should be understood that this

chosen texture kernel (see Figure 9.2) totally ignores

information obtained earlier concerning the

interdependence of pixels in the generating kernel as

expressed in the linear model. It is very possible that

better segmentation results could be obtained by using the

kernel shape which best fits each texture as this

particular pattern of points was found to be most

significant. The linear model used for simulation of each

texture might even be used itself as the distributions of

the parameter estimates are known if certain assumptions

are made [24,39). But neither of these appro-iches have

been tried even though improvements are expected.

9.3 Segmentation Using Individual Correlation

Coeffic ients

Individual correlation estimates for particular

pixel-pair spacings may be made by taking measurements

over all possible samples within the window containing

that spacing. This approach utilizes more information

than the fixed kernel method as it includes measurements

near all edges of the window (thus, the sample size is

increased). The result is a single coefficient for each

pixel-pair spacing. If the spacing between each pair is
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unique then the set of coefficients will be non-redundant.

The covariance matrices used to segment textures in the

last section may contain redundant information if the

pixel-pair spacings in the kernel are repeated.

A statistical test for comparison of two correlation

coefficients has been derived for the bivariate normal

distribution and is

2U2  X1  (9.2)

where

U2 = (Zl-f) 2(MI-3)+(Z 2 -Z) 2(M 2 -3)

and

Z1 = arctanh (rI)

Z2 = arctanh (r2 )

z3 = [(MI-3)Z 1 +(M2 -3)Z 2 ]/(MI+M2 -6)

r, and r2 are the computed correlation coefficients from

the two groups. This test is derived using the fact that

Z1  is approximately distributed N(ZI: arctanh(P I ),
-1

(MI-3) ) where Pl is the true correlation coefficient of

the population (see section 3.5). For additional details

see [39]. Again, to derive the tests assumptions of

normality and independent samples are madu.

As in the previous section, the test statistics may

be used to segment or identify textures. However,
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difficulty arises as our test must be performed for each

measured correlation value. Thus a number of U 2 values

are obtained if multiple pixel-pair spacings are used. At

this point these values can be combined in numerous ways.

As each U 2 value is chi-square distributed we can compute

the probability, PU that a random variable, which has

that chi-square distribution, is greater than or equal to

U2 as shown in Fig. 9.7. For U 2 = 0 (r, = r 2 ) this

probability is 1.0. A product of the probabilities

associated with each U 2 was used to indicate the overall

fit of one set of correlation coefficients to another set.

Finally, it should be noted that tests for equality

of correlation coefficients will not detect differences in

mean and variance over the window. The correlation

coefficient specifically removes these effects. As a

result, it may be advantageous to include tests for

equality of means and variances into the comparison

process. For equality of means the test statistic is

I - +2 - (9 .3 )tl= M~~ 2 M 1 tM+M2- 2

(M 10+( (2 1) o 2 1y_
1 2 2 1+

+__ _ _ _ _ _ _ _ I + U'
M M 2 - 2 M1 22

where p, and 2 are the calculated mean and 1 and 2
1 2

are the calculated variances for the two groups being

compared. This test statistic is a value of a random
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variable having the t-distribution with M1 +M2 -2 degrees of

freedom. For the equality of variances the test statistic

is

^2
01

t 2 F MI-I,M2 _1 (9.4)
a 22

This test statistic is a value of random variable having

an F-distribution with M -1 and M2-1 degrees of freedom.

The derivation of both of these tests requires the

assumption of normality for the two groups and an

independent sample set. The known distributions of the

test statistics t1  and f was used to obtain the

probabilities, pt I and Pf that a random variable having

that distribution would be greater than or equal to the

calculated values of Itli and MAX(fII/fl) or less than

-ttlI and MIN(fl,l/f I ) (see Figs. 9.8 and 9.9).

Having obtained the set of probabilities, pU ' and
2

Pt I and Pf corresponding to the set of tests for the

equality of correlation coefficients and the tests for

equality of mean and variance of the window a single test

statistic

lIog(MAX(Pu '10- 6 ))+log Pt +log Pf (9.5)i 1 1f

is formed to indicate the combined fit of thence tests.

The probabilities are log-scaled to eliiiinate scalin.
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Figure 9.9 The F-Distribution
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problems which would occur when taking the product of many

small numbers. The p u's are bounded below to reduce the
1

effect of single, noisy correlation coefficients. These

output test statistics obtained by comparing a windowed

region of Fig. 9.3 with statistics gathered from the

parent prototype texture sand were linearly scaled to

produce the intensity images shown in Figs. 9.11 to 9.13.

The results for W =W = 16 are shown in Fig. 9.11.BIG SMALL

Improved results for WBIG = 32 and WSMALL = 16 are shown

in Fig. 9.12. Results for W = 48 and W = 16 areBIG SMALL

shown in Fig. 9.13.

9.4 Concl..sions

In implementing the two procedures detailed in this

chapter, large values for the test statistics U1 and U2

were obtained even when comparing the matrices or

correlation values measured from an extracted portion of a

parent texture with those obtained from the entire parent

texture. There are two basic reasons for this. First,

the assumptions of normality are probably incorrect.

There is little reason to believe that the distribution of

pixels in an image is truly multi-variate normal.

Secondly, the samples used to estimate the covariance

matrix and the correlation coefficients are not random and

independent. They are strongly related by their spatial
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Figure 9.10 Input Composite Figure 9.11 Segmentation
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tion Values,
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Figure 9.12 Segmentation Figure 9.13 Segmentation
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tion Values, tion Values,
WBIG = 32 WBIG = 48
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positions in the image and are often adjacent. The sample

size may be adjusted to reflect this fact but no work in

this area was done.

In most cases, statistical tests may be considered to

be robust - not weakened significantly - when assumptions

used to derive them are violated. This is probably not

true of the test for equality of two covariance matrices

which has been called "frail at best" [47]. For these

reasons, the methods presented may be considered

innovative but not necessarily statistically sound.

In spite of this fact, the results show that the

method using the test for equality of covariance matrices

was superior to the method involving multiple tests of

individual correlation coefficients. This could be due to

the method used to combine the multiple tests.

The pictorial results of this chapter indicate the

usefulness of correlation values in texture

identification. The methods are not intended to be

improvements over existing segmentation identification

techniques. An adequate number of discrimination

techniques have been proposed by researchers already. The

discussion is intended to apply a specific texture

synthesis model which was based on second-order statistics

to the texture identification problem and this was done

successfully.
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CHAPTER 10

SUMMARY

10.1 Introduction

In this chapter, the results of each of the texture

synthesis methods presented in this thesis are discussed

and compared. This summary will clarify the methods and

analyze the favorable and unfavorable characteristics of

each.

10.2 Tabulation and Discussion of All Models

A complete synopsis of the synthesis methods

presented in this thesis is effectively contained in

Table 10.1. Listed in this table are the eleven methods

of texture generation and simulation presented in

Chapter 2 through Chapter 7. The first three columns of

the table state the location of the text and figures

(output) associated with each and also the key figure or

equation number which identifies the method in a simple,

straightforward manner.

The next three columns are used to evaluate the

complexity of statistics collection, statistics storage
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and the generating process as presented in Fig. 1.1. The

computational requirements are approximate and are

indicated in CPU time of a DEC KL-10. Naturally, these

numbers are relative to the processor used. The storage

requirements are given in terms of full-word processor

locations needed for statistics storage. In some cases,

this storage could be reduced by packing more than one

number (especially integers) into one 32- or 36-bit word

but that was not done here. For example, four 8-bit

integer values will fit into one 32- or 36-bit word.

The seventh column provides a relative measure of the

quality of the texture simulation on a zero to ten scale.

A value of 5 indicates a good or reasonable simulation.

As synthesis evaluation is a nebulous process so is the

assignment of relative merit. The assessment of results

is internal to this thesis as there is little synthesis

work in the general literature.

The last column of the table contains important

general comments on each method.

The one-dimensional binary generation method of

Chapter 2 permitted study of visual response to changes in

the probability distribution of texture. Although the

method was not useful for natural texture simulation, it

did lead to the models of later chapters.
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The N-gram model of Chapter 3 was an extension of the

Chapter 2 model applied to two-dimensional .iatural

textures. The results were very good even with the severe

constraint imposed by the upper limit on the number of

pixels allowed in the generation kernel. With an increase

in the complexity of the collection process this model was

extended (see section 3.9) to allow both a larger number

of pixels to be in the kernel and an increase in kernel

range. The extension produced better simulations of

structured textures. Finally, in section 3.10, the binary

linear model, which was used to determine the contents

(shape) of the generation kernel, was used to generate

binary textures. The textures generated using this model

were nearly equal in quality to those of the more complex

and storage-consuming N-gram model. The N-gram model of

Chapter 3 uses a generation kernel whose contents (shape)

depends on the linear model. Therefore, the number of

computations required in the statistics collection portion

of the N-gram model necessarily includes computations of

the linear model. However, in some cases, points which

lie far from the kernel eye can be neglected in the N-gram

model as only the best few are used due to storage

limitations. On the other hand, such points should be

included in the linear model therefore a larger

neighborhood surrounding the kernel eye should be used in
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the estimation of the linear model.

Realizing the power of second-order statistics, a

method of reproducing Nth order statistics using algebraic

reconstruction was presented in Chapter 4. The approach

proved to be academic as the number of iterations leading

to a solution yielding adequate synthesis results was very

large and required much storage and computation. The

simulations were also slightly less appealing than the

methods of Chapter 3.

In Chapter 5, the linear autoregressive model of

Chapter 3 was applied to 256-gray-level imagery. The

results were good considering the vast reduction of

information caused by the statistics collection process.

Slightly better results were obtained by allowing the

model to contain cross terms but the resulting complexity

suggests that the change in texture quality is not worth

the added effort and computational expense. Using

non-gaussian, non-stationary noise in the model (see

section 5.7) produced markedly better results but with a

requirement of slightly increased storage.

The skip-generate method of Chapter 6 may be used to

improve tile simulation of textures having a coarsc

structurc. The model produces results equal in quality to

the I inear autoregressive model of Chapter 5 while
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requiring fewer computations in the collection process.

The piecewise linear autoregressive model presented later

in Chapter 6 promises an analytically superior fit but

produced results which were not appealing enough to

warrant additional effort.

The field-definition model presented at the end of

Chapter 6 is useful when generating textures composed of

subtextures. The idea of defining fields for texture

generation is a powerful approach for both statistics

collection and texture synthesis but the slow response of

the autoregressive model fo boundaries produced results

less appealing than expected.

The best-fit model of Chapter 7. represents a

brute-force approach to texture synthesis. Though

computr.tionally demanding, the final results show that

excellent texture simulations can be generated using

complete statistics from a relatively small neighborhood.

The problems with a small neighborhood are seen in the

simulation of regular textures such as raffia where the

size of the primitives in the texture is much greater than

the window used in the best-fit calculation.

Combining the method of choosing a kernel shape using

a linear model (discussed in Chapter 3) with the

skip-generate and best-fit models would result in a very
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powerful, but extremely computationally-demanding texture

synthesis method. The effort required to generate

textures by such a complex combination of methods would

not be required in many cases where simpler models will

produce adequate results. The complexity of the model

depends on the texture being simulated.

The ideas presented in Chapter 8 allow the

introduction and removal of texture non-homogeneities. In

Chapter 9, texture identification methods using the

statistics employed in model parameter calculation of

earlier chapters were proposed. Although they do not

discriminate textures as well as the methods of other

researchers they do illustrate the application of

synthesis models to texture identification problems.

10.3 Suggestions for Future Study

Many approaches to texture analysis have been carried

out in the frequency domain by using transform and

filtering techniques. Texture synthesis could be carried

out in such a domain or on frequency-filtered image. For

example, numerous textures could be generated in

non-overlapping frequency planes and then added together

to obtain a final texture synthesis. However, each of

these planes is probably interdependent and a simple

generation with summation is probably not possible.

212



Another future approach might employ to a greater

extent those statistics useful for texture identification

and discrimination. In most cases, these measurements are

not readily suitable to a synthesis process but with

careful study, many could possibly be used in such a

manney. Still, there is little evidence thus far to

indicate that statistics useful for texture identification

will be useful for texture synthesis.

An area which deserves immediate attention involves

preprocessing of texture by convolution. Noise filtering

and smoothing could be useful in improving model parameter

estimates. Also, a deconvolution processing of images

synthesized to resemble convolved textures might produce

excellent simulation results.

Along this line, another synthesis method should be

considered. With any model there is always unexplained

variance which the model fails to account for when it is

applied to the original parent texture. Ideally, this

unexplained variance would be merely noise but this is

rarely the case in practice. It is possible to develop

additional models which could be used to explain (or

simulate) this previously-unexplained variance. Combining

these new models with the original model would result in

an improved synthesis method.
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Li:.ally, texture is often produced by the shading

effect of a light source on a three-dimensional object.

Therefore, to generate a texture, a three-dimensional

relief could be formed then shaded using current,

commonly-used graphics techniques. Such an approach could

be worthwhile in some cases but in most, synthesizing

three-dimensional relief (which is the same as generating

height information over a two-dimensional grid) is

equivalent to generating intensity information over a

two-dimensional grid.

10.4 Conclusion

Many natural textures are generated using a variety

of methods presented in this thesis. The quality of the

natural texture simulations depends on the amount. of

computation and storage used in each process. many

textures were adequately simulated using simple models

thus providing a potentially great data compression for

many applications. Others required more extensive

computation to synthesize visually pleasing results.

Thus, as might be expected, the success of any synthesis

method is highly dependent on the texture itself. When

examining the results of any method the characteristics of

both the model and the textures used must be considered,.
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It would be unwise to believe that all textures could

be generated using any single approach, especially one

which promises to compress texture information to a

handful of numbers. Yet this is precisely what has been

attempted in the texture synthesis work of this thesis.

It is important to note the power and complexity of

each synthesis method of this thesis. Many textures can

be simulated well using simple models such as the

autoregressive model if the model is carefully

constructed. Improvements in texture simulation were made

by modifying these models and allowing them to become more

complex and use more information in the generation

process. Other textures require more ccmplex models such

as the best-fit model of Chapter 7. The shortcomings of

each method will constantly indicate where future work can

be done.
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APPENDIX A

GENERATING BINARY TEXTURE PAIRS POSSESSING

EQUAL SECOND-ORDER STATISTICS

Texture pairs may be generated which have equal

second-order statistics but are visually discriminable.

Let Ga(Vl 1 V2 ,V 3 ,V 4 ) represent the probability of

generating a 0 after the pixels VIV 2 ,V 3 ,V 4 along a line

in a one-dimensional texture (a) and Gb(VlF V 2 ,V 3 ,V 4 ) in

textures (b). (This is a slight change of notation from

Chapter 2 as (a) and (b) will be texture number indices in

this Appendix.) Define

V: = j-V i f (A.1)

where ViE{ 0, i}.

The restrictions used to generate textures with equal

second-order statistics, Pa(VIVj) = Pb(VlIVj), in Chapter

2 may be stated as

Ga (VI,V 2 V 3 ,V 4 ) = Ga(VIV 2 ,V3V) (A.2)

Ga WiV 2 ,V 3 ,FV4 ) = I-Ga(VIV2V3,V 4) (A.3)
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and

Ga(VIV 2 ,V3,V 4 ) = Gb(VIV 2 ,V3,V4 ) . (A.4)

Equations (A.2) and (A.3) must also hold for texture

(b). Combining Eq. (2.14) and (2.24) for a 4-gram system,

it can be shown that

Pa (VIV 2 ,V 3 ,V 4 ) = Pa(VV5V'V 4 ) (A.5)

Pa(VIV 2 ,V 3 ,V4 ) = Pb(VlIV 2 ,V3V 4 ) • (A.6)

Combining the above restrictions yields two further rules,

[V5+(-)VGa(Vl'V2'V3'V4)]=[V5 + ( - I ) V 5 Ga (V I ' V 2' , V V )

V55)]A7

V I

=[V;+(_I)V5GaV, ,3V ) ( A . 8 )

These restrictions yield textures having the equalities

Pa(0)= Pb(0) = Pa (1) = Pb(1) • (A.9)

As no closed-form solutions to Eq. (2.14) and Eq. (2.24)

are easily obtained the proofs verifying Eq. (A.5) and

(A.9) are very complex. However, these properties may be

illustrated by generating numerous examples where

Eq. (A.2), Eq. (A.3) and (A.4) hold.
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Assuming the above conditions, a proof then follows

to show that Pa(VIVj) = Pb(VlIVj) if the above

restrictions hold:

Pa(VlVj) = Pa(VI'V 2 '' . Vj-'Vj)

V.1
i~i, j

=EP a(V'V 2' V 3'V4) 1Vk+(-l) Ga(Vk- 4 'Vk_3 Vk- 2 ,VkI
k=5

j V"
Pb(Vl,V2 ,V,V 4 ) [V+(-1) 5Gb(Vk 4 ,V 3 ,Vk2,Vk_)

k=5
= -Pb(VI'V2'V3 'V4 ) (A.l10)

[ ~V3k_2+(-1) Gb 
2 (V_,Vk~,Vk,Vk) ]

[V3 k- 3 +(-il) 3k+3Gb (V3 k-l,V3 kV 3 k-lV3k_2) ]

[V3k+ 4+(-l)V Gb (V3kV 3k lV3k_2,V3k+3)]}

r VI

II [V' +(-I) 3+l-b (V V H

where r = MOD(j-l,3). It is very important to note that

the variables in the product expression match

successively. That is, V3 k-l and V 3 k+2 all have the prime

notation in each sub-expression. At this point, there are

three possible cases:
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Case 1, r = 0

In this case, the proof is completed by a series of

change of variables as summing over V. is the same as1

summing over V'. The remainder of the proof becomes1
JV k

=2--]Pb(VV2V 3V 4 ) " k [Vk+(-l) kGb(Vk-4,Vk-3,Vk-2,Vk1))
k=l (A.11)

= Pb(VliVj)

Case 2, r = 1

In this case, the remainder of the proof becomes

j-1 Vk
P b(VI,ViIV3,V4) 11 [Vj+(-I) Gb V Vk_ 2 _.

k=1
V.

* [V-+(-l) JGb(Vj_4 VH 3 Vj 2 ,Vj_)]

j-1 Vk (A.12)
Pb(VIl,VV 3 V 4 ) TI [Vk+(-l) Gb(Vk_4Vk_3,VkA2,Vk) ]

k=1

.[VA+(-l) 3Gb(Vj_ 4 ,Vj_ 3 Vj_ 2 ,VjI)]

Thus, in this case Pa(VIVj) = Pb(VlIV3). This implies

that Pa(01'0j) = Pb(01ulj); Pa(01,1j ) = Pb(0 1, 0 9); Pall, 0j)

= Pbl1111 j); Pa(ii, lj) = Pb(ll, Oj).We know Pa(0V1,j) = Palj

and Pb( 01,1j= Pb(3l, 0 j) and P(O) = P(l) = 0.5. So Pa(VIVj)

= Pb(VIVj) = 0.25 for all V1 and Vj.
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Case 3, r = 2

In this case, as in the case where r = 0, the

remainder of the proof is straightforward, requiring only

a change of variables.
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APPENDIX B

GOODNESS-OF-FIT TEST

FOR N-GRAMS

We may think of the one-dimensional binary texture

generation process as an experiment which should yield

certain N-grams given certain generation parameters.

These N-grams or Nth-order densities may be determined

analytically by combining Eq. (2.14) and Eq. (2.24) of

Chapter 2. However, as with any Monte-Carlo simulation,

the analytic parameters may not agree exactly with the

statistics or estimates of those parameters based on

observations from the simulation or experiment.

Statistical tests may be used to determine whether the

statistics match the parameters to the extent expected

given a given random sample.

The most common statistical test for this purpose is

the "goodness-of-fit" test involving the chi-square

distribution. This test is used when we want to compare

an observed distribution with the corresponding values of

a theoretical distribution. The test is based on the

statistic
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2 N (f-e) 2
2 (B.l)

i=l e.1

The fi and the ei are the observed and expected

frequencies of a certain N-gram pattern in our experiment.

The sampling distribution of this statistic is

approximately the chi-square distribution with 2
N -1

degrees of freedom. (The constraints on the system of

N-grams yield this number of degrees of freedom.) A

chi-square distribution with n degrees of freedom is given

by

2 ( 2 1/2 (n-2) 2
= 2k -X /2 (B.2)

2 n/2r (n)

The approximation is close provided e >5.

As a first step in the testing process, the complete

set of N-grams, P(VI,V 2 ,... VN) is computed using

Eq. (2.14) and Eq. (2.24). Their corresponding

statistics, P(VIV 2 ... ,VN) are computed from the

generated texture by counting the number of occurrences of

each pattern (V1 .... ,VN) and dividing by the total sample

size, M. Then, fi = P(Vl...'VN) 'M and

e i = P(V 1...,V N ) .M. For large N, the number of degrees

of freedom is greater than 30 and a normal distribution
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approximation is quite accurate. The expression

/2X2 - .2N-l is approximately normally distributed as the

standard normal distribution. The tables listed in (181

may also be used for large N. Additional details

concerning the goodness-of-fit test may be found in

[45,63-65].

For each of the textures in Chapter 2, this test was

applied to each texture half and the hypothesis that the

expected and measured N-grams are statistically equal was

accepted at a a= 0.01 confidence level for N = 1,...,10.

Actually, these tests are not independent in a statistical

sense as the information content for each N overlaps. But

this poses no violation of assumptions of the statistical

test. However, all possible patterns in the generated

sample may be a violation of the independence of samples

assumption. Still, a low chi-square value indicates a

good fit of the data to predicted parameter.
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APPENDIX C

PSEUDO-RANDOM VARIATE GENERATION

Two algorithms were used in this thesis to generate

uniformly-distributed pseudo-random numbers. Both are

modifications of the multiplicative congruence method

(48,66]. These uniformly-distributed variates may be

transformed to normally-distributed deviates using the

inverse normal probability distribution function.

The first algorithm is the Lehner Pseudo-Random

Number Generator [67]. The general form of this generator

is-

X = KX (MOD 231-1) (C.1)

where

K = 1429 (MOD 231-1) = 63036001610

The resulting number is basically a 31-bit pattern which

is in the form of a floating-point number in the range

(0,1). The algorithin can be written to avoid division by

2 31- [681.

The second al jorith m used to gjenerate uniformly
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distributed variates is

Xn+1 = 75 X n(MOD 2 31_ 1 ) (C.2)

The resulting integer is multiplied by 2- 31 to convert it

to a floating-point number. This generator is reported in

Refs. [69-71].

These uniform deviates may be transformed to

normally-distributed deviates if desired, this is

accomplished by computing the inverse of the integral

t e t/2dt (C.3)

The algorithm for accomplishing this is described in Ref.

[57] and is briefly outlined here.

The basic interval (0,1) is divided into 4 segments.

In each segment the inverse of the Gaussian integral,

invgauss(X) , or an integral of a similar form is

approximated by a minimax rational function [55,72]. The

approximations for the final 3 segments (comprising the

interval Xc{(0,0.075) (0.925,1)}) are functions of the

transformed variable

W -log e(l-X 2 ) (C.4)

This transformation of the variable improves the
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efficiency and stability of the approximation [601. The

rational functions in these intervals are of the form

invgauss(X) I W+W . C0 + C3•1W+ d2W+ 
(C.5)

For the remainder of the (0,1) interval,

xE{(0,075, 0.925) }, the function is of the form

invgauss(X) =
(c.6)

(Z+Z. (b 0 +a 1 .Z /(b 1 +Z +a 2 /(b 2 +Z +a 3 /(b 3 +Z2 ))))) *SGN(Z)

where z = ll-2xl. The constants ai, bi, ci and di have

specific values found by. solving the minimax problem and

are given in Ref. [57].
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